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u = t + x/c
v = t − x/c

t = (u + v)/2
x = c(u − v)/2

dτ2 = dt2 − dx2/c2 = du dv



One extra page to be deleted

Minkowski coordinates

dτ2 = dt2 − dx2/c2

(
g11 g12
g21 g22

)
=

(
1 0
0 −1/c2

)

Light (or “null”) coordinates

dτ2 = du dv

(
g11 g12
g21 g22

)
=

(
0 1/2

1/2 0

)

Physical Immediate Coodinates (2 space-time dimensions)

dτ2 = µ(τ1, τ2) dτ1 dτ2

(
g11 g12
g12 g22

)
=

(
0 µ(τ1, τ2)/2

µ(τ1, τ2)/2 0

)

Physical Immediate Coodinates (4 space-time dimensions)

dτ2 = gαβ dτα dτβ ; (α, β, · · · = 1, 2, 3, 4)

{gαβ} =


0 g12 g13 g14

g12 0 g23 g24

g13 g23 0 g34

g14 g24 g34 0


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Setting of the Problem
Four principal clocks broadcast their proper time. Any observer
in space-time receives, at any point along its space-time trajectory,
four times {τ2, τ2, τ3, τ4} , that, by definition, are the space-time
coordinates.

If the observer has his own clock, with proper time denoted
σ , then he knows his trajectory τα = τα(σ) and his four-velocity
uα = dτα/dσ . The observer may have embarked accelerome-
ters, gradiometers, and gyroscopes in his ‘satellite’. How can we
estimate the space-time metric using these data?
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A Priori Constraints
The space-time metric shall be determined thanks to different
kinds of data, and thanks to three different constraints. The con-
straints are:

• the diagonal components {g11, g22, g33, g44} of the contra-
variant metric must be zero in the natural basis associated
to the coordinates {τα} ;

• the metric has to approximately satisfy the Einstein equa-
tions;

• among all possible space-time metrics consistent with our
data and other constraints, we wish that the metric is ‘smo-
oth’.
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Different Kinds of Data
• The signal emitted by one clock at proper time ρ reaches

some other clock at proper time σ ; the space-time metric should
be such that there is a zero-length geodesic connecting the two
space-time points.

• If each satellite has a clock the metric has to be such that the
integral of the

√
gαβ dxα dxβ along each trajectory should corre-

spond to the proper time as given by the clock.
• If the satellites have an accelerometer, the metric has to be

such that the computed acceleration (computed via the connec-
tion) is close to the observed one.

• If the satellites have a gradiometer, the metric has to be
such that the computed tidal accelerations (computed via the Rie-
mann) are close to the observed ones.

• The satellites may have gyroscopes, this providing further
information on the space-time connection.
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First Constraint on the Metric
In the ‘light-coordinates’ {τα} being used, the contravariant com-
ponents of the metric must are have zeros on the diagonal,

{gαβ} =


0 g12 g13 g14

g12 0 g23 g24

g13 g23 0 g34

g14 g24 g34 0

 ,

so the basic unknowns of the problem are the six quantities

{g12, g13, g14, g23, g24, g34} .

This constraint is imposed exactly, by just expressing all the rela-
tions of the theory in terms of these six quantities.

The covariant components of the covariant metric are not zero.
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Second Constraint (Einstein Equation)
The Einstein equation is

Tαβ =
1
χ

Eαβ ,

where tαβ is the stress-energy tensor, and where Eαβ is the Ein-
stein tensor,

Eαβ = Rαβ − 1
2 gαβ R ,

and where

Γα
βγ = 1

2 gασ ( ∂β gγσ + ∂γ gβσ − ∂σ gβγ )

Rα
βγδ = ∂γ Γα

δβ − ∂δ Γα
γβ + Γα

µγ Γµ
δβ − Γα

µδ Γµ
γβ

Rαβ = Rγ
αγβ .
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Third Constraint (Smoothness)
We wish that our final estimation of the metric, g , is close to the
a priori estimation gprior . More precisely, letting Cg be a suit-
ably chosen (smoothing) covariance operator, we impose that the
least-squares norm

‖ g − gprior ‖Cg
2 ≡ 〈 C−1

g ( g − gprior ) , ( g − gprior ) 〉

is small.
In a more advanced state of the theory, we should introduce

the logarithm of the metric, and base the minimization criterion
on the difference of logarithmic metrics.
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Proper Time Data
At any point along the trajectory of the satellite (whose proper
time is σ ) we must have gαβ dτα dτβ = dσ2 , or, introducing the
four-velocity

gαβ uα uβ = 1

Let
g 7→ zcomputed = z(g)

be the function that to any metric field g associates the values
gαβ uα uβ at each point along each of the trajectories. Let be 1
the field defined on the trajectories that associates the value ‘one’
to each point of each trajectory. We wish the (least-squares) norm

‖ z(g)− 1 ‖Cz
2 ≡ 〈 C−1

z ( z(g)− 1 ) , ( z(g)− 1 ) 〉

to be small, where Cz is a suitably chosen covariance operator.
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Arrival Time Data
Our data set here consists on a set of N values

{σ i
obs } ; i = 1, 2, . . . , N .

We denote by

g 7→ σ computed = σ(g)

the operator that to every conceivable space-time metric field g
associates the computed data. From an algorithmic point of view,
for a given g the computation of σ(g) involves taking one by
one all the trajects between a source and a receiver, and for each
of the trajects compute an arrival time.

We wish the (least-squares) norm

‖σ(g)−σobs ‖Cσ

2 ≡ 〈 C−1
σ (σ(g)−σobs ) , (σ(g)−σobs ) 〉

to be small, where Cσ is a covariance operator describing the
experimetal uncertainties in the measured arrival time values.
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Accelerometer Data
The acceleration along a trajectory is

aα = uβ ∂uα

∂xβ
+ Γα

βγ uβ uγ =
duα

dσ
+ Γα

βγ uβ uγ ,

where σ is the proper time along the trajectory. The measure of
the acceleration provides information on the connection.

We write
g 7→ acomputed = a(g)

the application so defined, and we wish the (least-squares) norm

‖ a(g)− aobs ‖Ca
2 ≡ 〈 C−1

a ( a(g)− aobs ) , ( a(g)− aobs ) 〉

to be small, where Ca is a covariance operator describing the
experimental uncertainties in the measured acceleration values.
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Gyroscope Data
If a gyroscope follows a trajectory xα = xα(σ) , whose velocity is
uα and whose acceleration is aα , the evolution of the spin vector
sα along the trajectory is described by the Fermi-Walker trans-
port:

Dsα

dσ
≡ dsα

dσ
+ Γα

βγ uβ sγ = sβ (aβ uα − aα uβ) .

Consider that our data is

πα =
dsα

dσ
.

Then we have

πα = sβ (aβ uα − aα uβ)− Γα
βγ uβ sγ .
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Gravity Missions
• The LAGEOS (LAser GEOdynamics Satellites) are passive

spherical bodies covered with retroreflectors.
• The CHAMP (CHAllenging Minisatellite Payload) satellite

is equipped with an accelerometer.
• The GRACE (GRAvity recovery and Climate Experiment)

consists in two satellites with accelerometers and measure of their
mutual distance with an accuracy of a few microns.

• The GOCE (Gravity Field and Steady-State Ocean Circula-
tion Explorer) satellite will consist in a three axis gradiometer.

• and Gravity Probe B. . .
• and LISA (Laser Interferometer Space Antenna). . .
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GOCE Gradiometer

GOCE will employ a three-axis electrostatic gravity gradiometer
that will allow gravity gradients to be measured in all spatial di-
rections. The measured signal is the difference in gravitational
acceleration at the test-mass location inside the spacecraft caused
by gravity anomalies from attracting masses of the Earth. Ex-
ploiting these differential measurements for all three spatial axes
has the advantage that all disturbing forces acting uniformly on
the spacecraft (i.e. drag, thrusters resulting in linear or angular
accelerations) can be compensated for. The length of the baseline
for an accelerometer pair is 50 cm.
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Gradiometer Data
At first order in δvα , δaα = Rα

µνρ uµ uρ δvν . As the three vec-
tors aα , uα , and δvα are known, we obtain information on the
components of the Riemann tensor. We drop the δ for the vector
δvα , and we write ωα instead of δaα :

ωα = Rα
µνρ uµ uρ vν .

Given a metric field g , the theoretical values of the tidal acceler-
ation are detoted ωcomputed , and we write

g 7→ ωcomputed = ω(g) .

The gradiometer provides the ‘observed acceleration’ ωobs , with
observational uncertainties represented by a covariance operator
Cω . We wish the following norm to be small:

‖ω(g)−ωobs ‖Cω

2 ≡ 〈 C−1
ω (ω(g)−ωobs ) , (ω(g)−ωobs ) 〉 .
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The 12 Causal Classes of Newtonian Frames

are respectively  time-like , space-like  coordinate

t , e

t , e

T , E

hypersurfaces or covectors

lines or tangent vectors

surfaces or planes

The 6 surfaces or planes of every class   X1X2X3X4X5X6  are generated restectively
by the 4 hypersurfaces or covectors   x1, x2, x3, x4   in the following order

X2 = x1 x3

X4 = x2 x3

X1 = x1 x2 X3 = x1 x4

X5 = x2 x4 X6 = x3 x4

       teee    ttee    ttte    tttt 

      TEEEEE  TEEEEE  TEEEEE  TEEEEE
      EEEEEE  EEEEEE  EEEEEE  EEEEEE

teee  TTTEEE  TTTEEE  TTTEEE  TTTEEE
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The 199 Causal Classes of Space-time Frames
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are respectively time-like , light-like , space-like coordinate

t , l , e

t , l , e

T , L , E

hypersurfaces or covectors

lines or tangent vectors

surfaces or planes

The 6 surfaces or planes of every class   X1X2X3X4X5X6  are generated respectively
by the 4 hypersurfaces or covectors   x1, x2, x3, x4   in the following order

X1 = x1 x2 X2 = x1 x3 X3 = x1 x4

X4 = x2 x3 X5 = x2 x4 X6 = x3 x4
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