Dynamics of warps in spiral galaxies

Kanak Saha

JAP, Indian Institute of Science Bangalore, India

An outline of the talk:

- 1. Warp in galaxies and its observational facts.
- 2. Problems in warps.
- 3. Physics of symmetric warps.

PART-I

- 4. Making asymmetric warps in spirals.
- 5. Asymmetry and the dark matter halo?

PART-II

- 6. Where does warp begin in the disk?
- 7. Preliminary results from Spitzer observations.

Warps: Geometrical distortions of the galactic mid-plane in the vertical direction.

Grand-design warps are anti-symmetric integral sign or 'S' shaped.

Disks of spiral galaxies refuse to stay flat

ESO121 – G006

NGC7814

Observational facts:

- Warps first observed in our own Galaxy, Kerr 1956
- Warps are detected in Visible IR Radio
- Primarily and prominently seen in 21 cm
- The connection between optical and HI warps is not clear

- Briggs rule: i). Warp develops between R_{25} and R_{HO}
 - ii). Line of node tends to be straight inside $R_{\rm HO}$
 - iii). Outside R_{HO} LON curves so as to form a loosely wound leading spiral.
 - No such established rules for optical warps!

- No connection between HI & optical warps!
- No warps found so far in Lenticulars!
- Warps are more frequent in late-type galaxies
- warps seem to be stronger in rich environment.
- Warps are best observed when viewed edge-on
- More than 50% of the Spiral galaxies are warped
 based on Statistical analysis.
- Most of the warps are asymmetric
 —based on recent observations

Almost all galaxies in the our Local group e.g. Milky Way, M31, M33 are Warped!

Warp is a common Phenomenon!

Generating mechanism? Maintenance, Survival over Hubble

Q. Is there a unique mechanism to generate warps in spiral galaxies?

time?

Q. How does warp survive in spiral galaxies?

Non triggered

Triggered

By E.S.

Some mechanisms put forward so far:

- 1. Hydro-dynamical and Anisotropic Magnetic pressure of the IGM.
- 2. Tidal interaction with Satellites and companion galaxies.
 - 3. Infall of intergalactic matter onto the disk
 - 4. Cosmic infall and Angular momentum misalignment
 - 5. Non-linear generation of warps through spirals
 - 6. Galactic Bar as a possible source
 - 7. Warp as Bending Instability

*Maintenance problem for warps:

1. Winding up problem due to Differential Precession in the disk.

Typical winding up time ~ less than a Gyr!

2. Dynamical friction from the dark matter halo

-May not be active indefinitely! So major problem is due to winding!

Solution: Normal mode?

Governing dynamics of bending modes

Dynamical equation of small bending:

$$z_{m}(r, \mathbf{\phi}, t) = \Re\left(h_{m}(r)e^{i(\omega_{m}t - m\mathbf{\phi})}\right)$$

Bending mode of the disk with azimuthal wave number m

Q. How to solve the eqn. of bending?

- Eq.(1) is an integral equation and is solved by recasting it into a Matrix-Eigenvalue problem.
- The galactic disk is approximated as a system of N uniformly spaced concentric rings.
- Resulting problem reduces to an N-dimensional Quadratic Eigenvalue Problem (QEP):

$$(I\omega_m^2 + D\omega_m + S)h_m = 0$$

Eigenvalue ---

Physical state of the system

N-dimensional eigenvector

❖ Integral-sign galactic warp (m=1)

• Warps are normal mode oscillation of the disk mid-plane

• Disk embedded in a dark matter halo and precessing with

a pattern speed

• Warp mode is represented by:

$$z_1(r, \mathbf{\phi}, t) = h_1(r) \cos(\omega_1 t - \mathbf{\phi})$$

Parameters for the warping mode:

$$q=0.7; R_c=2.0 R_d$$

$$\rho_0 = 0.0117 \, M_d / R_d$$

$$\omega_1 = -0.0109 \, \sqrt{G M_d / R_d}$$

Warped surface

Saha & Jog, A&A, 2006

Physics of m=1 symmetric warp

WKB analysis with no self-gravity of perturbation Disk supports:

- Slow mode (m=1)
- Fast mode (m=1)

Disperses because of differential precession of the disk

No solution in the gap!!

Global self-gravity of perturbation seems to be promising!

Complete global solution:

self-gravity of perturbation helps

synchronizing different rings so that the whole disk precesses uniformly with a single frequency

Continuum mode

Eigen spectrum
Saha 2007 (submitted)

Saha 2007 (submitted)

Symmetric Warps?

Some facts:

- 1. Symmetric warps are less in number
- 2. Its hard to understand a galactic disk represented by a pure single mode!

All kinds of modes are generated in the disk and they are likely to interact with each other --- whenever the disk is subjected to a perturbation

So understanding symmetric warp poses a greater difficulty!

Asymmetric Warps

- Warps in most disk galaxies are seen to be asymmetric.
- Asymmetry in warps may be the norm rather than exception!
 - Q. Are there any generic mechanism to generate these asymmetries in warps?
 - Disks of Spiral galaxies are capable of supporting various kinds of 'Bending modes'
 - Warps and Bowl-shaped structures are such bending modes in the disks of spiral galaxies

Bowl-shaped mode?

Bowl-shaped mode (m=0)

- Bowl-shaped mode Axisymmetric oscillations of the galactic disk
- Disk embedded in a dark matter halo:
 Oscillating from 'cupped upwards' to flat to 'cupped

downwards' and back again with frequency

Parameters for the bowl-shaped mode

$$q=0.7; R_c=2.0 R_d$$

Saha & Jog, A&A, 2006

Generating Asymmetric Warps

• Principle:

Linear and Time Dependent Superposition of

Bowl-shaped mode (m=0)

&

Integral-sign warping mode (m=1)

• According to the above principle asymmetric warps can be represented by:

 $Z_{asym}(r, \phi, t) = A_0 z_0(r, \phi, t) + A_1 z_1(r, \phi, t)$

➤ In the current picture the presence of Bowl-shaped mode (m=0) is the primary reason for various dynamical asymmetric warps in the disk.

Various Asymmetric Warps

Asymmetric warp manifests itself as a classic example of dynamical wave interference in a self-gravitating media

S-shaped asymmetric warps:

 \longrightarrow Ratio of $A \land A$

Fig-d shows the most asymmetry in warp

Saha & Jog, A&A, 2006

* Extreme Asymmetric Warps

Observations show that extreme asymmetries are less in nature

May be they are very hard to make!

For the L-shaped asymmetric warp $A_0=0.55 \& A_1=0.20$

For the U-shaped asymmetric warp $A_0=1.0 \& A_1=0.10$

These numbers are contrived!

* Asymmetry & Dark matter halo

Asymmetry-index :

$$\frac{1}{a_{sym}} = \frac{\left| \alpha_{right} - \alpha_{left} \right|}{\alpha_{sinh} + \alpha_{left}}$$
Provided:
$$\alpha_{right}^{2} + \alpha_{left}^{2} \neq 0$$

- So more the dark matter within the disk less is
- Disks with less dark matter are likely to show more asymmetry in warp

Saha & Jog, IAU235,2006

Where does warp begin?

Warps are seen in the outer regions of galaxies typically $\sim 4-6$ disk scale lengths.

Remember Briggs rule

You can ask a question: why?

Or

What decides the actual radius for the onset of warps in the disk?

Model for Tidal Interactions

m=1 generates a well-defined integral-sign warp

Basic Physics to Calculate disk Response:

• Vertical equation of motion:

$$\frac{d^2 z_m}{dt^2} = -\nabla_0^2 z_m + \frac{\partial \Psi_1}{\partial z}|_{(R_0, \Phi_0, 0)}$$

• Linearized continuity equation:

$$\frac{\partial \rho_1}{\partial t} + \vec{\nabla} \cdot (\rho_0 \vec{v}_1) + \vec{\nabla} \cdot (\rho_1 \vec{v}_0) = 0$$

• Poisson equation:

$$\nabla^2 \Psi_{resp}(R, \mathbf{\phi}, z) = 4\pi G \rho_1(R, \mathbf{\phi}, z)$$

* We solve these eqs self-consistently and calculate the response potential by inverting the Poisson eq. using Green's function technique

Solution of the problem:

• The linear response potential corresponding to the mth order perturbations is given by the following relation:

$$\Psi_{resp}(R, \phi, z = 0) = \Re_{m}(R) \Psi_{1}(R, \phi, z = 0)$$
Dimensionless response of the disk galaxy

Nature of disk response:

The galactic disk responds negatively to the external perturbation for two commonly used system:

- i) Disk-alone system
- ii) Disk + Oblate halo system

Onset of warps:

 We consider an oblate dark matter halo with parameters similar to that of our Galaxy

(Saha & Jog, MNRAS, 2006)

R_{min} depends primarily on the stiffness of the disk: measured by the thickness parameter.

Disk Reduction Factor:

How the magnitude of the perturbing potential is reduced due to negative disk response

(Saha & Jog, MNRAS, 2006)

A relation between R_{min} and Dark matter content

- Ratio of dark matter to disk mass -- within 10 R_d
- Dark matter halo considered to be slightly Oblate

(Saha & Jog, MNRAS, 2006)

Onset of warps in Spitzer/IRAC observations

Galaxy	R_d				
ESO 121 –G006	18.11	96.75	84.00	90.37	0.071
NGC 4565	84.22	405.75	378.75	392.25	0.034
NGC 4013	28.20	123.00	129.00	126.00	0.024
NGC 4157	29.40	145.50	135.75	140.60	0.035
NGC 4302	35.40	121.50	115.50	118.00	0.025
NGC 5907	56.90	233.25	228.00	230.90	0.012
NGC 7090	32.55	91.50	82.50	87.00	0.052
NGC 7814	23.06	135.00	121.50	128.25	0.053
NGC 4217	31.90	111.75	98.25	105.00	0.064
NGC 4244	89.35	242.25	264.75	253.50	0.044

In collaboration with

Roelof de Jong (STScI, USA)

Benne Holwerda (STScI, USA)

ESO 121 – G006

Analysis based on 6 galaxies from the Spitzer/IRAC obs:

Saha, de Jong & Holwerda 2007 (manuscript in prep.)

Summary:

- Understanding symmetric warp poses potential difficulty
- Maintenance of warp in low density region is really hard
- Most of the warps are asymmetric
- A generic mechanism to generate asymmetric warps is proposed.
- Disk with smaller sized dark matter halos are likely to show more asymmetry in warps.
- Inner parts of the galactic disks are robust to external perturbations
- ► Negative disk response is a general phenomenon in self-gravitating system
- \triangleright Galactic warps begin around 4 6 disk scale lengths --- explaining the well-known Briggs rule for warps.
- Theoretically predicted warp onset radii matches quite well with Spitzer observations
- ➤ Onset-asymmetry seen in Spitzer/IRAC observations --- an indication of asymmetric dark matter potential!

References:

Lynden-Bell, D. 1965, MNRAS, 129, 299

Hunter, C. & Toomre, A. 1969, ApJ, 155, 747

Sparke, L. & Casertano, S. 1988, MNRAS, 234, 873

Briggs, F. 1990, ApJ, 352, 15

Binney, J. 1992, ARA & A, 30, 51

Nelson, R. & Tremaine, S. 1995, astro-ph/9510113

Saha, K. & Jog, C. J. 2006, A & A, 446, 897

Saha, K. & Jog, C. J. 2006, MNRAS, 367, 1297

Saha, K. & Jog, C. J. 2007, IAUS235, p-113

Asymmetry-index & Hubble Sequence

Hubble Tuning Fork diagram

Early type disks are more Likely to show asymmetric warps