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• Introduction:

Chiral perturbation theory as the low-energy effective
theory of the strong interactions

• Simple example: electromagnetic mass difference of kaons
and pions
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Introduction

LQCD = − 1

4g2
Ga

µνG
a µν + qiγµDµq − qMq

M → 0, the left- and right- chiral projections may be rotated
independently and the N quark flavors rotated amongst each
other.

We have the chiral symmetry given by the group SU(N)L ×
SU(N)R

SU(N)L × SU(N)R
〈qq〉→ SU(N)V ; V = (L + R), A = (L − R)

Corresponding to the SU(N)A broken symmetry we have N2−1
(pseudoscalar) Goldstone bosons.

N=2, Goldstone bosons are π±, π0

N=3, Goldstone bosons are π±, π0, K±, K0, K0, η

The Goldstone theorem yields

< 0|Aµ|π >= Fπpµ,

and Fπ ≈ 93 MeV.

To leading order, O(p2), L(2)
eff

is the non-linear sigma model

Lagrangian.

F 2

2
∇µUT∇µU

where U is a 4-component real O(4) (note that O(4) ≡ SU(2)×

SU(2)) unit vector.
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At O(p4):

L(4)
eff = l1(∇µUT∇µU)2 + l2(∇µUT∇νU)(∇µUT∇νU)+

l3(χ
TU)2 + l4(∇µχT∇µU)+

l5(U
T F µνFµνU) + l6(∇µUT Fµν∇νU) + l7(χ̃

T U)2+

h1χTχ + h2trFµνF
µν + h3χ̃T χ̃

where Fµν : covariant tensors of external fields and derivatives,
and the vectors χ and χ̃ proportional to external scalar and
pseudoscalar fields.

Use this effective lagrangian, loops of the non-linear sigma
model and appropriate renormalization, obtain the Green’s
functions of QCD at this order in the momentum expansion.

At this order, 10 additional coupling constants enter the ef-
fective lagrangian.

Alternatively in terms of matrices, e.g., SU(3) chiral pertur-
bation theory. The matrix U then contains the pion and kaon
fields: U = exp(i

√
2Φ/F ),

Φ =





π0
√

2
+ η8√

6
π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K̄0 −2η8√
6




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Dashen’s theorem

• Theorem says that the electromagnetic mass difference
of the kaons is equal to that of the pions in the chiral
limit.

Q2 =
m2

s − m̂2

m2
d − m2

u

=
M2

K

M2
π

M2
K − M2

π

(M2
K0 − M2

K+)QCD
·
{

1 +O(m2
q )

}

(1)

• Inclusion of electromagnetic effects into the chiral La-
grangian.

• Recent work on estimating these constants using reso-
nance saturation.

• Technically challenging work, accounting for proper renor-
malization.

• Departure from chiral limit — ’violation’ of Dashen’s
theorem.
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From a recent talk by B. Kubis, Trento, July 2005

Corrections to Dashen’s theorem, quark mass ratio Q2 (2)
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inspired by H. Leutwyler 1996

Virtual Photons in Chiral Perturbation Theory p.16

(∆M2
K)EM − (∆M2

π )EM = 1.5(∆M2
π)

B. Ananthanarayan and B. Moussallam, JHEP 0405:047, 2004
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Pion-pion scattering

Pion-pion scattering described by A(s, t, u)

The process is

πa(p1) + πb(p2) → πc(p3) + πd(p4)

Isospin conserved by strong interactions; the transition matrix
is given by:

A(s, t, u)δabδcd + A(t, u, s)δacδbd + A(u, s, t)δadδbc

A(s, t, u) = A(s, u, t) ( denoted as As) generalized Bose statistics
s = (p1 + p2)

2, t = (p1 + p3)
2 and u = (p1 + p4)

2, all momenta
taken to be incoming.

√
s the centre of mass energy (mπ = 1)

t and u related to the cosine of the centre of mass scattering
angle via cos θ = (t − u)/(s − 4), s + t + u = 4

Isospin ampliltudes

The s-channel amplitudes for definite iso-spin:

T 0
s (s, t, u) = 3As + At + Au

T 1
s (s, t, u) = At − Au

T 2
s (s, t, u) = At + Au
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Leading order (Weinberg)

A(s, t, u) =
s − 1

32πF 2
π

At one-loop order, loops generate correct analytic structure

At O(p4) 4 scale free coupling constants l1,2,3,4 enter the ππ
scattering amplitude.

In our normalization, the partial wave decomposition reads

T I(s, t) = 32π
∑

`

(2` + 1)P`

(

1 +
2t

s − 4

)

tI`(s)

tI`(s) =
1

2iσ(s)

{

ηI
` (s) e2iδI

`
(s) − 1

}

σ(s) =

√

1 − 4

s
.

δI
l : phase shifts, ηI

l : elasticity parameters.

The threshold parameters are the coefficients of the expan-
sion

Re tI
`(s) = q2` {aI

` + q2 bI
` + q4 cI

` + . . . }
with s = 4(1 + q2).

aI
l : scattering lengths, bI

l : effective ranges

Weinberg: LO prediction for a0
0 = 7/(32πF 2

π ) ' 0.16.

At O(p4) infrared singularities modify prediction substantially,
expressed in terms of the four l’s, in addition to Fπ.

Estimates from disparate sources such as D- wave scatter-
ing lengths [alternatively from ππ phase information directly],
SU(3) mass relations and FK/Fπ, correction of about 25% to
the LO prediction,

Gasser & Leutwyler a0
0 = 0.20± 0.01
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Dispersion relations for the t-channel isospin amplitudes

Froissart bound → 2 subtractions

T I
t (s, t, u) = µI(t) + νI(t)(s − u)+

1

π

∫ ∞

4

ds′

s′2

(

s2

s′ − s
+ (−1)I u2

s′ − u

)

∑

I ′

CII ′
st AI ′

s (s′, t)

µI(t), νI(t) are unknown t-dependent

Subtraction constants (µ1 = ν0 = ν2 = 0), AI
s(s

′, t) absorptive
part of the s-channel amplitude. Cst crossing matrix, the
entries of which are

Cst(c, d) = (−1)(c+d)(2c + 1)

{

1 1 d
1 1 c

}

Roy representation

T I
s (s, t) =

∑

I ′

1
4
(s1

II ′
+ t CII ′

st + u CII ′
su )T I ′

s (4,0)

+

∫ ∞

4

ds′ gII ′
2 (s, t, s′)AI ′

s (s′,0) +

∫ ∞

4

ds′ gII ′
3 (s, t, s′)AI ′

s (s′, t) .

For our purposes, it is convenient to write the kernels in the
form

g2(s, t, s
′) = − t

π s′ (s′ − 4)
(u Cst + s Cst Ctu)

(

1

s′ − t
+

Csu

s′ − 4 + t

)

g3(s, t, s
′) = − s u

π s′(s′ − 4 + t)

(

1

s′ − s
+

Csu

s′ − u

)

.

Furthermore, Ts(4,0) = 32π(a0
0,0, a2

0).
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Roy’s representation for the partial wave amplitudes tI
l of

elastic ππ scattering reads

tI`(s) = kI
` (s) +

2
∑

I ′=0

∞
∑

`′=0

∫ ∞

4M2
π

ds′ KII ′

``′ (s, s
′) Im tI

′

`′ (s
′) ,

where I and ` denote isospin and angular momentum, respec-
tively and kI

`(s) is the partial wave projection of the subtrac-
tion term. It shows up only in the S- and P -waves,

kI
` (s) = aI

0 δ0
` +

s − 4M2
π

4M2
π

(2a0
0 − 5a2

0)

(

1

3
δI
0 δ0

` +
1

18
δI
1 δ1

` − 1

6
δI
2 δ0

`

)

.

The kernels KII ′

``′ (s, s
′) are explicitly known functions

Contain a diagonal, singular Cauchy kernel that generates the
right hand cut in the partial wave amplitudes, and logarith-
mically singular piece that accounts for the left hand cut.

The validity of these equations has rigorously been estab-

lished on the interval −4M2
π < s < 60M2

π .
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The comparison of the axiomatic and chiral representations
of the scattering amplitude yields sum rules for the low-energy
constants.

αI
0 = aI

0 − 4

π

∫ ∞

4

dx

x(x − 4)
Imf I

0(x) +
4

π

∫ ∞

4

dx

x2
Imf I

0(x) I = 0,2

γI
0 =

1

π

∫ ∞

4

dx

x3
Imf I

0(x) I = 0,2

β1
1 =

3

π

∫ ∞

4

dx

x2(x − 4)
Imf1

1(x)

α1
0 = γ1

0 = β0
1 = β2

1 = 0.

In particular we have for l̄1 and l̄2:

l̄1 = 24π2Fπ
4(

41

960π2Fπ
4
− 64π

3
(γ2

0 − γ0
0 + 3β1

1)),

l̄2 = 24π2Fπ
4(

29

480π2Fπ
4
+ 32π(β1

1 + γ2
0)).

For the numerical values we find for l̄1 and l̄2:

l̄1 = −1.7± 0.15

l̄2 = 5.0.
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The strategy: solve these equations numerically using accu-
rately known phase-shift information from medium and high
energy region to determine the low-energy parameters.

Sources are πN → ππN, e+e− → π+π−.

High energy information comes from ’theory’, viz., Veneziano
model, Pomeron, etc..

Recent comprehensive analysis is reported in

B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler,
Physics Reports 353 (2001) 207.

Self-consistent solutions in the near threshold region yield a0
0

and a2
0.

G. Colangelo, J. Gasser, H. Leutwyler, Physics Letters B488
(2000) 261; Physical Review Letters 86 (2001) 5008; Nuclear
Physics B603 (2001) 125

Precise determination is also a test of the standard picture
of chiral symmetry breaking. “Generalized chiral perturbation
theory” of Stern and collaborators. Now ruled out.

The main process considered here is the rare decay Kl4 where
the final state ππ interaction yields the window to the phase
shifts. Comes from the Pais-Treiman method.

Recent measurements at E 865, Brookhaven National Labo-
ratory
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Experimental determination of the phase shift difference δ0
0 −

δ1
1 From ACGL
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The ρ shape from Roy equation fits and from electromagnetic

form factor of the pion, Gounaris-Sakurai fit.
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New determination of the phase-shift difference from the E
865 collaboration from 400, 000 reconstructed events.

S. Pislak, et al., Physical Review D 67 (2003) 072004; Phys-

ical Review Letters, 87 (2001) 221801
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E 865’s report on the scattering lengths
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PIONIUM ATOMS

Theory — ’Deser’s theorem’

(S.Deser, M. L. Goldberger, W. Baumann and W. Thirring,
Physical Review 96 (1954) 774.)

Modern relativistic bound state theory — due to the Bern
group.

(See, e.g., J. Gasser, V. E. Lyubovitskij, A. Rusetsky and A.
Gall, Physical Review D 64 (2001) 016008)

τ = 2.9± 0.1 fs
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The DI(meson)R(elativistic)A(tom)C(omplex) experiment at
CERN Experiment: PS212

• Attempts to measure the lifetime of the pionium (π+π−)
atom in its groundstate, of about 3 fs at the 10% level.

• The bound state arises due to the electromagnetic inter-
action, and then through the strong interaction decays
into π0π0.

• The lifetime is related to the difference

a0
0 − a2

0

• The measurement is in medium.

• Ni Run already completed. nA ∼ 6600

• Lifetime measurement is τ = 2.91+0.49
−0.62 fs

Accurate lifetime measurement is expected at the 5% level.

a0
0 − a2

0 = 0.264+0.033
−0.020m−1

π

B. Adeva et al., Phys. Lett. B 619 (2005) 50

B. Adeva et al., J. Physics G 30 (2004) 1929∗

∗Featured in highlights of J. Physics 2004
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New proposal of Cabibbo — measurement by NA48 collabo-
ration

N. Cabibbo, Phys. Rev. Lett. 93 (2004) 121801,
N. Cabibbo and G. Isidori, JHEP bf 0503 (2005) 021

9

π− π+ −−> π0 π0  charge exchange scattering 

A diagram contributing to K+ --> π+ π0 π0   

�  Strong rescattering  + charge exchange
  with effective coupling constant  �  (a

0 
-a

2
)  

�  Cusp effect induced 
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8

   NA48/2  data K± --> π± π0 π0   

Cusp at  mππ =  2mπ+
   

~ 28,000,000 events
 50 days – Summer 2003

No pionium visible 
at first sight!

 mππ    GeV2
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12

  Cusp-like effect in K+ --> π+ π0 π0  

∂Γ/∂(mππ)2 

 (mππ)2 GeV2

Where the looping  π+ π− pair flips from 
off-mass to on mass shell

Nicola Cabibbo (2004),  hep-ph/0405001

One loop calculation predicts
a cusp located at  mππ =  2mπ+

  
Cusp 

(2mπ+
 )2 = 0.0779 GeV2
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  Fit  results 

         (a
0 
-a

2
)·mπ =  0.281 ± 0.007

No surprise from other parameters

The pionium amount has been fixed 
according to the prediction  

         Z.K. Silagadze (1994),  

            hep-ph/9411382

 (a
0 
-a

2
)·mπ  has low sensitivity to pionium

0.1·σ(BR)/BR

Measured by varing the predictied 

amount in the range  ± 50%  

Fit region = 151 bins
the whole spectrum is 420

5108.0
K

atom  K −
−+±±

±±

×≈
πππ→

+π→
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Implications to (g − 2)µ:

The leading uncertainties to the standard model value now
comes from hadronic uncertainties.

Celebrated example is the hadronic light by light scattering
(Knecht and Nyffeler)

Uncertainties in the pion form factor due to inconsistent (?)
data sets of CLEO and Novosibirsk. Also the ALEPH data
from τ decay.

Does not allow a test of the standard model.

What about πK atom?

Proposal has been sent to the CERN scientific council.
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πK scattering

We consider the process

πI1(p1) + KJ1(q1) → πI2(p2) + KJ2(q2),

with the four-momenta pi, qi and the isospin Ii and Ji of the
pions and the kaons, respectively. The Mandelstam variables
are defined as (Σ ≡ M2 + m2)

s = (p1 + q1)
2, t = (q1 − q2)

2, u = (q1 − p2)
2,

with

s + t + u = 2Σ,

where M and m are the pion and the kaon mass, respectively.
In the s-channel the center of mass scattering angle Θs and
momentum qs are given by (∆ ≡ M2 − m2)

zs ≡ cosΘs = 1 +
t

2q2
s

=
t − u + ∆2

s

4q2
s

,

q2
s =

(s − (m − M)2)(s − (m + M)2)

4s
,

and the partial wave decomposition is defined by

T Is(s, t, u) = 16π
∑

(2l + 1)f Is

l (s)Pl(zs).

The partial waves may then be parametrized by the phase
shifts δI

l and the elasticities ηI
l ,

f I
l (s) =

√
s

2qs

1

2i

{

ηI
l (s)e

2iδI
l
(s) − 1

}

,

and have the threshold expansion

Re f I
l (s) =

√
s

2
q2l

{

aI
l + bI

l q
2 + O(q4)

}

.
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In the t-channel, the center of mass momenta of the pion and
the kaon are qt and pt, respectively, and the centre of mass
scattering angle Θt is given by

zt ≡ cosΘt =
s + p2

t + q2
t

2qtpt
=

s − u

4ptqt
,

pt =

√

t − 4m2

4
, qt =

√

t − 4M2

4
.

The partial waves are defined by

T It(s, t, u) = 16π
√

2
∑

(2l + 1)f It

l (t)Pl(zt).

Once one of the isospin amplitudes is known the other and
combinations of these are fixed by crossing symmetry:

T 1/2(s, t, u) =
3

2
T 3/2(u, t, s) − 1

2
T 3/2(s, t, u),

T+(s, t, u) ≡ 1

3
T 1/2(s, t, u) +

2

3
T 3/2(s, t, u), =

1√
6

T It=0(s, t, u),

T−(s, t, u) ≡ 1

3
T 1/2(s, t, u)− 1

3
T 3/2(s, t, u) =

1

2
T It=1(s, t, u)

It may be seen from the above that T +(s, t, u) is even under
the interchange of s and u, whereas T−(s, t, u) is odd. The
fixed-t dispersion relation for T + is given by

T+(s, t, u) = 8π(m + M)a+
0 +

1
π

∫ ∞
(m+M)2

d s′

s′2

[

s2

s′−s
+ u2

s′−u

]

A+
s (s′, t) + S+ + L+(t) + U+(t).

The expressions for S+, L+(t), and U+(t) are known functions.
These are obtained by combining fixed-t and hyperbolic dis-
persion relations. An analogous dispersion relations can be
written for

T−(s, t, u)

(s − u)
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All the results discussed above are from

B. Ananthanarayan and P. Büttiker, European Physical Jour-
nal C 19 (2001) 517; B. A., P. B. and B. Moussallam, ibid.
C 22 (2001) 133

The aim is to use all the known information from phase shift
analysis and chiral inputs to render the process predictive.
Becomes a sensitive test of the full SU(3) chiral perturbation
theory, viz., of the expansion in the s-quark mass.

Amplitude has been computed by Bernard, Kaiser and Meißner

System of sum rules for various low-energy constants. Un-
precedented determination has been carried out.

COMPASS experiment at CERN.

Measurement of phase shifts from D-meson decays? Can

be used to pull out δ
1/2
0 − δ

1/2
1 (see BA and K. Shivaraj, hep-

ph/0508116) with data gathered by the FOCUS collaboration
in Fermilab
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π0 → γγ

• Adler, Bell and Jackiw: chiral anomalies

∂µA3
µ =

α

4π
F F̃ ⇒ κ =

α

4πFπ

Predicts

Γπ0→γγ = 7.73 eV

within one standard deviation of current world-average
experimental value.

• QCD: anomaly understood at the quark level; same re-
sult.

• ChPT allows to determine corrections due to chiral-
symmetry breaking by quark masses

In SU(2) NLO corrections, but LO in SU(3): they are
+2%

NLO corrections: they are −0.3%

B. Ananthanarayan and B. Moussallam, JHEP 0205:052,
2002

J. Goity, A. M. Bernstein, B. Holstein, Physical Review
D 66 (2002) 076014
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Experimental Status World average value: Γπ0→γγ = 7.74 ±
0.55 eV. 7% error bar. Today: PRIMEX at JLab: Primakoff
with aimed error of ' 1.5%

M. Khandekar (for collaboration) Fizika B 13 (2004) 483,

D. S. Dale (for collaboration) ibid. 365,

D. S. Dale (for collaboration) Braz. J. Phys. 34 (2004) 983.

π0 →
γγ 

 D
ec

ay
 W

idt
h (

eV
)

CERN
(Direct)

Cornell
(Primakoff)

DESY
(Primakoff)

Tomsk
(Primakoff)

Average
(PDB)

Proposed
Experiment

Theory
(±2%)

7

8

9

10

11

12

0 1 2 3 4 5 6 7

Figure 1: πo → γγ decay width in eV. The horizontal line is the prediction of the axial
anomaly(Eq. 2)[1, 2] with an estimated 2% error[7]. The experimental results with errors
are for : 1) the direct method[9]; 2,3,4) the Primakoff method [11, 12, 13]; 5) Particle Data
Book Average [3]; 6) the expected error for our future experiment, arbitrarily plotted to
agree with the predicted value.
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From a talk by A. Gasparian

PAC23, January 18, 2003

The Experimental Program

We propose to measure:

• Two-Photon Decay Widths: Γ(π0 → γγ), Γ(η → γγ), Γ(η′ → γγ)

• Transition Form Factor Fγγ∗P of π0, η, η′ at low Q2

(0.001–0.5 GeV2)

via the Primakoff effect.
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Form Factor Measurements by KTeV (E832) Experiment

• 800 GeV/c proton beam strikes a BeO target

• KL → π±l∓ν decay modes are studied

• 1.9 million events for e, 1.5 million events for µ

• Necessary for extraction of Cabibbo-Kobayashi-Maskawa
matrix element |Vus|

T. Alexopoulos et al., Phys. Rev. D70 (2004) 092007

B. Ananthanarayan, I. Caprini, G. Colangelo, J. Gasser and
H. Leutwyler, Phys. Lett. B 602 (2004) 218
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Afterword

• Chiral perturbation theory is the low-energy effective
theory of the standard model.

Worked out to two-loop order for many processes.

Provided impetus of many innovative new experiments.

• Dashen’s theorem for electromagnetic mass difference.

• Remarkable synthesis of dispersion relation phenomenol-
ogy and effective lagrangian theory.

• ππ scattering now worked out to an unprecedented level
of accuracy.

Remarkable new experiments (E865, DIRAC)

• πK scattering is the next setting for such a state of
affairs.

• π0 → γγ is a sensitive laboratory and will be tested at
PrimEx.

• Form factor measurements at KTeV
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