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Bayesian change point model: full conditional distributions

Our goal is to draw samples from the 5-dimensional posterior distribution
f(k, θ, λ, b1, b2|Y) The posterior distribution is
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Note: The reason we have a formula for what f is proportional to (hence ∝
rather than =) instead of an exact description of the function is because the
missing constant (the normalizing constant) can only be computed by inte-
grating the above function. Fortunately, the Metropolis-Hastings algorithm
does not require knowledge of this normalizing constant.

From (1) we can obtain full conditional distributions for each parameter by
ignoring all terms that are constant with respect to the parameter. Some-
times these full conditional distributions are well known distributions such
as the Gamma or Normal.
Full conditional for θ:
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Full conditional for λ:
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Full conditional for k:
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Full conditional for b1:
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Full conditional for b2:

f(b2|k, θ, λ, b1|Y) ∝ × 1
b0.5
2

e−λ/b2×e−1/b2

b2
∝ b−1.5

2 e−(1+λ)/b2 ∝ IG(0.5, 1/(λ+1))

We are now in a position to run the Metropolis-Hastings algorithm.

Note 1: θ, λ, b1, b2 all have full conditional distributions that are well known
and easy to sample from. We can therefore perform Gibbs updates on them
where the draw is from their full conditional. However, the full conditional
for k is not a standard distribution so we need to use the more general
Metropolis-Hastings update instead of a Gibbs update.

Note 2: The Inverse Gamma density is said to be a conjugate prior in this
case since it results in a posterior that is also Inverse Gamma and therefore
trivial to sample. As such, this density is mathematically convenient (due
to its conjugacy property) but does not necessarily result in a better MCMC
sampler. Also, it has poorly behaved moments; it may be better to adopt
another prior density (such as a Gamma) instead.



The Metropolis-Hastings algorithm:

1. Pick a starting value for the Markov chain, say (θ0, λ0, k0, b0
1, b

0
2) =

(1, 1, 20, 1, 1).

2. ‘Update’ each variable in turn:

(a) Sample θi ∼ f(θ|k, λ, b1, b2,Y) using the most upto date values
of k, λ, b1, b2 (Gibbs update using the derived Gamma density).

(b) Sample λi ∼ f(λ|k, θ, b1, b2,Y) using the most upto date values
of k, θ, b1, b2. (Gibbs update using the derived Gamma density).

(c) Sample bi
1 ∼ f(b1|k, θ, λ, b2,Y) using the most upto date values

of k, θ, λ, b2. (Gibbs update using the derived Gamma density).

(d) Sample bi
2 ∼ f(b2|k, θ, λ, b1,Y) using the most upto date values

of k, θ, λ, b1. (Gibbs update using the derived Gamma density).

(e) Sample k ∼ f(k|θ, λ, b1, b2,Y) using the most upto date values of
k, θ, λ, b1, b2. This requires a Metropolis-Hastings update:

i. ‘Propose’ a new value for k, k∗ according to a proposal dis-
tribution say q(k|θ, λ, b1, b2,Y). In our simple example we
pick q(k|θ, λ, b1, b2,Y) = Unif{2, . . . ,m − 1} where m is the
length of the vector (time series) Y.

ii. Compute the Metropolis-Hastings accept-reject ratio,

α(k, k∗) = min
(

f(k∗|θ, λ, b1, b2,Y)q(k|θ, λ, b1, b2,Y)
f(k|θ, λ, b1, b2,Y)q(k∗|θ, λ, b1, b2,Y)

, 1
)

iii. Accept the new value k∗ with probability α(k, k∗), otherwise
‘reject’ k∗, i.e., the next value of k remains the same as before.

(f) You now have a new Markov chain state (θ1, λ1, k1, b1
1, b

1
2)

3. Return to step #2 N-1 times to produce a Markov chain of length N .


