

THE MAGNETIC FIELD OF SPICULES

R. Centeno', J. Trujillo Bueno², A. Asensio Ramos²

I. High Altitude Observatory (NCAR) 2. Instituto de Astrofísica de Canarias

Hinode - BFI (Ca II), courtesy of A. de Wijn

And a state of the second state of the second

Rebecca Centeno

Bangalore – December 2008

Introduction

Diagnostic techniques Observations and analysis Concluding remarks

Observational aspects Models

A. Secchi in Le Soleil (1877)

Some properties of spicules:

Heights ~ 6500 - 9500 km Widths \leq 300 - 1500 km Upward velocities ~ 25 km/s T ~ 5000 - 15000 K Densities ~ 3 \cdot 10⁻¹³ g/cm³

T and density constant with height

Introduction

Diagnostic techniques Observations and analysis Concluding remarks

Observational aspects Models

A brief history

Models have to explain properties of spicules: - how can chromospheric material be raised to such heights without raising its temperature?

Main ingredients:

-Flux tube expanding from photosphere all the way up into the corona

- Large energy deposition at some point of the flux tube

- Non-linear regime

Models FAIL to reproduce some of the

observational aspects of spicules partly due to our poor knowledge of spicule properties

See, e.g., De Pontieu et al. (2005)

BOTTOMLINE: NEED FOR RELIABLE OBSERVATIONAL CONSTRAINTS OF SPICULAR PROPERTIES!!

He 10830 Formation Magnetic field diagnostics

He 10830 Formation Magnetic field diagnostics

Formation mechanism

Under normal chromospheric temperature conditions triplet states are not sufficiently populated

Hell

Hel

He 10830 Formation Magnetic field diagnostics

Formation mechanism

Coronal EUV light triggers the PR mechanism ...

He 10830 Formation Magnetic field diagnostics

Formation mechanism

Coronal EUV light triggers the PR mechanism ... Which leads to an overpopulation of the triplet states

He 10830 Formation Magnetic field diagnostics

Zeeman, Hanle and scattering polarization

He 10830 Formation Magnetic field diagnostics

Zeeman, Hanle and scattering polarization

The presence of a magnetic field breaking the symmetry modifies the population imbalances and the quantum coherences between the magnetic sublevels, resulting in a net change and a rotation of the plane of polarization.

See review by Truillo Bueno (2005)

Observations Inversions Results

Observations

VTT - Tenerife Infrared Polarimeter (TIP) (Martinez Pillet et al. 1999; Collados et al. 2007)

> Full Stokes vector @ λ 10830 Å Spectral sampling: 11 mÅ Spatial sampling: 0.17"

Slit fixed parallel to South limb, crossing QS spicules. At 2" and 3" off-limb.

Time series of ~ 1 hr with 50 s cadence, averaged to achieve a high S/N Spectral and spatial binning

Date: August 2008 Conditions on the Sun: VERY quiet

Observations Inversions Results

Stokes maps

Stokes I provides thermodynamical information: τ, Doppler, damping

Observations Inversions Results

Stokes Q and U determine the magnetic field orientation. However, in the Hanle saturation regime, they only provide a lower threshold for the field strength

Stokes maps

Observations Inversions Results

Stokes maps

Rebecca Centeno

Bangalore – December 2008

Observations Inversions Results COPIE CHANE ZEEMAN LIGH

Inversion code

HAZEL inversion of Stokes profiles. Asensio Ramos, Trubillo Bueno & Landi Degl'Inoccenti(2008)

Physical ingredients:

- optical pumping
- atomic level polarization
- level crossings and repulsions
- Zeeman, Hanle, Paschen-Back

<u>Radiative transfer in slab model:</u>

- constant properties
- optical depth τ
- height h
- deterministic B
- illuminated by photospheric CLV

<u>Free parameters:</u>

B, θ , χ , Dopp, Jamp, τ , h, v

Observations Inversions Results

Inversion examples

Observations Inversions Results

Derived magnetic field

Bangalore – December 2008

Conclusions and remarks

High S/N spectro-polarimetric measurements of off-limb spicules in He I 10830 Å multiplet at different distances to the limb

* Detection of Stokes V -- crucial for determining magnetic field strength -- longitudinal Zeeman effect doesn't cancel out

* We measured the magnetic field vector along slit and at 2 heights above the limb

- -- spatial variations
- -- twist in magnetic field vector

- -- simultaneous H α images and He D_3 measurements
- -- more detailed analysis as a function of height
- -- statistical properties at equator, poles, active and non-active regions

Conclusions and remarks

High S/N spectro-polarimetric measurements of off-limb spicules in He I 10830 Å multiplet at different distances to the limb

* Detection of Stokes V -- crucial for determining magnetic field strength -- longitudinal Zeeman effect doesn't cancel out

* We measured the magnetic field vector along slit and at 2 heights above the limb -- spatial variations

-- twist in magnetic field vector

- -- simultaneous H α images and He D_3 measurements
- -- more detailed analysis as a function of height
- -- statistical properties at equator, poles, active and non-active regions

Conclusions and remarks

High S/N spectro-polarimetric measurements of off-limb spicules in He I 10830 Å multiplet at different distances to the limb

* Detection of Stokes V -- crucial for determining magnetic field strength -- longitudinal Zeeman effect doesn't cancel out

* We measured the magnetic field vector along slit and at 2 heights above the limb -- spatial variations

-- twist in magnetic field vector

- -- simultaneous H α images and He D_3 measurements
- -- more detailed analysis as a function of height
- -- statistical properties at equator, poles, active and non-active regions

Conclusions and remarks

High S/N spectro-polarimetric measurements of off-limb spicules in He I 10830 Å multiplet at different distances to the limb

* Detection of Stokes V -- crucial for determining magnetic field strength -- longitudinal Zeeman effect doesn't cancel out

* We measured the magnetic field vector along slit and at 2 heights above the limb -- spatial variations

-- twist in magnetic field vector

- -- simultaneous H α images and He D $_3$ measurements
- -- more detailed analysis as a function of height
- -- statistical properties at equator, poles, active and non-active regions