

Heating diagnostics with MHD waves

R. Erdélyi & Y. Taroyan

Robertus@sheffield.ac.uk

SP²RC, Department of Applied Mathematics, The University of Sheffield (UK)

The solar corona

•1860s – "coronium" discovered

•1902 – "coronium" has lesser atomic weight than hydrogen (Mendeleev)

•1930s – spectral lines due to known elements at very high stages of ionisation (Grotrian, Edlén)

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

1 Mill

The heating enigma

corona

Courtesy: Unknown Nice Person

Loop structures are building blocks" of corona

Yohkoh/SXT

TRACE

Hinode/EIS

Fe XII 195/FWHM

50

c.uk

Theory of loop oscillations

Theory of loop oscillations

Aschwanden 2003, Wang 2004, Erdélyi 2008

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Energetic & magneto-seismological implications of MHD waves

- Extraction and transfer of energy over long distances
- Energy deposition through various processes (nonlinear wave conversion and MHD shock formation, resonant absorption, phase mixing, etc.)
- Important dynamic (spicules, explosive events, etc.) and energetic consequences (plasma heating and acceleration)
- Coronal waves provide information about the magnetic field, transport coefficients, heating function, etc. → diagnostics of corona

Heating footprints predicted by various mechanisms

• MHD waves

- Magnetic reconnection
- Wave-particle resonant interactions

University of Sheffield

"Traditional" methods for temperature measurements

Filter ratio analysis

Background subtraction

Isothermal approximation

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Case study: SXT and SUMER observations of hot loop oscillations

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Evershed C

2-5 Decem

1D loop modelling (with TR!)

Thermal conductionHeating rate

Radiation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial s} (\rho v) = 0,$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial s} (\rho v^2) = -\left(\frac{\partial P}{\partial s} + \rho g_B\right),$$

$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial s} (Ev) = -\frac{\partial}{\partial s} (Pv) + \rho v g_B$$

$$-\frac{\partial}{\partial s} \left(-\kappa T^{5/2} \frac{\partial T}{\partial s}\right) + (H - L),$$

$$E = \frac{\rho v^2}{2} + \frac{P}{\gamma - 1}$$

Hydrodynamic evolution of the loop

Footpoint excitation by pulse

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

SUMER measurements

Results of line profile synthesis

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

LEVY CORNOSCER CANA

Results of combined observations and forward modelling (from Taroyan, Erdélyi et al. ApJ 2007)

- Establish the nature of the observed hot loop oscillations (Cauchy problem → unique solution)
- Standing acoustic waves set up by a footpoint microflare
- Reproduce the time-distance profile of the heating function (important for understanding the nature of the heating process)

• Why only hot loops? Where are the SWs in cooler EUV loops?

University of Sheffield

Quest: Compute synthesized Hinode/EIS observations (i.e. theory)

Question: Can standing waves exist in cooler loops?

Selected lines -FeX 190Å, FeXI 188.23Å, FeXII 195Å

Imaging mode - 40'' slot

Spectroscopy mode – 1'' slit

Loop location – disc centre

Orientation – south-north

Standing waves (P_pulse=P_f) Propagating waves (P_pulse<P_f) (both types of waves are formed but not very well seen in imaging mode see Taroyan et al. 2005 for theory)

Best seen in spectroscopy mode

Standing waves

Propagating waves

•Oscillations are seen in all three lines;

•Oscillations are in phase for Doppler but NOT in phase in intensity because of

heating/cooling Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Quest: Reality check #1 Hinode/EIS observations (i.e. real data)

• There is nothing to prevent oscillations in EUV loops

•Oscillations are best seen in Doppler shift

→ let's analyse Hinode data!

XRT and EIS observations

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Doppler shift along the slit

Doppler shift (Fe XII 195 Å)

University of Sheffield

Doppler shift and intensity time series averaged over 5 pixels

Evershed CC, Bangalore 2-5 December 2008

Properties of wave: Wavelet analysis >1.2mHz

COGNOSCERE CAVSAS

Wavelet analysis (w. background cooling)

WAVELET ANALYSIS

COGNOSCERE

Wavelet analysis (cooling substructed): 1.2 mHz

OGNOSCERE

Interpretation

The XRT and EIS snapshots suggest that

- The oscillations seen by EIS in spectroscopy mode correspond to a footpoint region of a loop;
- The oscillations are preceded by a microflare near the footpoint.
- Intensity increase in lower temperature lines (Fe VIII) and decrease in higher temperature lines (Fe XII, FeXIII, Ca XIII)
- Quarter period phase shifts between the intensity and Doppler shift oscillations.
- Most likely interpretation: standing acoustic wave in an EUV loop

Quest: Reality check #2 Hinode/EIS observations (i.e. kink oscillation)

Evershed CC, Bangalore 2-5 December 2008

XRT and EIS observations

- Slit close to apex → detected wave motion is likely to be transversal
- No EIS images were available

Evershed CC, Bangalore 2-5 December 2008

Doppler shift and intensity time series averaged over 5 pxs

University of Sheffield

Wavelet analysis: 3 mHz

University of Sheffield

Interpretation

- The XRT snapshots suggest that the oscillations seen by EIS correspond to an apex region of a loop crossed by the slit;
- Transverse motions should have a line-of-sight component
- Doppler and no intensity oscillations --> magnetoacoustic kink waves
- Magnetic field measurements using intensity ratios between different Fe lines: B~10 G

Summary so far...

•Hinode/XRT and Hinode/EIS observations in sit-and-stare mode are carried out to study oscillations in active region loops.

•Small amplitude oscillations are seen in different lines and pixels along the slit.

•Doppler shift and intensity oscillations (1 mHz) are detected near loop footpoints and are interpreted as standing longitudinal acoustic type waves.

•3 mHz oscillations in the Doppler shift are present at near apex regions and are most likely to be kink waves. These waves have small amplitudes and have different origins from previously studied examples of flare-triggered oscillations. The oscillations are used to measure the magnetic field.

(Erdélyi & Taroyan A&A 2008)

Problem

•The diagnostic methods currently used in coronal seismology rely on the presence of *coherent* standing/propagating waves

•The presence of such waves is not guaranteed!

New method

Analysis of Doppler shift time series as a diagnostic tool

(What we propose to do when we do not see waves and oscillations)

Simple loop model: linear ideal (M)HD

$$0 < s < L$$

(Wave operator) $v = -\frac{\partial}{\partial s}$ Heating(t,s)

Heating(t,s) = Σ Dirac delta or finite duration random pulses

Boundary conditions at s=0, s=L

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Green's function

(Wave operator) $G(t,s;\tau,\xi) = \delta(t-\tau) \delta(s-\xi)$

Boundary conditions at s=0, s=L

Solution uniquely determined by the Green's function, BCs and the random Heating(t,s)

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Results of the analytical study

•The Fourier analysis shows that the power spectrum for the time series of velocity has peaks at the frequencies of the standing waves(!) during random heating

•The height and shape of the peaks depends on the spatio-temporal properties (e.g., length, duration, spatial distribution, etc.) of heating

Analogy with helioseismology

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Case study: Results of a numerical study

Evershed CC, Bangalore 2-5 December 2008

University of Sheffield

Line synthesis

- •Ne VIII (~0.8 MK), Mg X (~1.2 MK) resonant lines
- •Emissivities along the loop
- •Doppler width of the line
- •Projection of bulk velocity on the line of sight
- •Line broadening function
- •Total intensity

Line profiles

University of Sheffield

University of Sheffield

Multi-threaded loops

Distribution of frequencies would allow to derive info about fine-structure of the system

Evershed CC, Bangalore <u>2-5 December 2008</u>

University of Sheffield

What we propose to do when we do not see waves and oscillations

(Taroyan et al. A&A 2007)

The power spectra to be used to

• Estimate the energies involved in the random pulses

- Study the multi-thermal structure of the loops
- Determine average loop temperature

• Distinguish uniformly heated loops from loops heated at their footpoints

The power spectrum analysis of the Doppler shift timeseries for coronal line profiles is a potentially powerful tool for the diagnostics of the solar coronal plasma

Evershed CC, Bangalore <u>2-5 December 2008</u>

University of Sheffield