Spectro-polarimetry with NLST

K. Sankarasubramanian Space Astronomy & Instrumentation Division ISRO Satellite Centre Bangalore & NLST Team

Plan of the Talk

CONCEPT REALIZATION

Summary of NLST Telescope features

Aperture (Primary Mirror M1)	: 2 Metre	
Focal Length	: 4 Metre	ω
Optical Configuration	: 3 Mirror, Gregorian on -axis	LAY
Field of view	: 300 arc sec	TUC
Final focal ratio of the system	: f / 40	
Image Scale	: 2.58 arc sec mm-1	
Optical quality	1 < 0.1 arc sec over the field of view	
Wavelength of operation	: 3800 A to 2.5 microns	
Polarization accuracy	: 1 part in 10,000	
Active and Adaptive optics	: to realize near diffraction limited performance	

NLST Science Requirements

- Small-scale Magnetic Structuring of quiet and active regions
 - Requirements: 0.1"; NC; ~30mA; 30"X30"; 0.1%
- Waves in the flux tubes and active regions
 - Requirements: 0.1"; ~1min; <60mA; 100"X100"; 0.1%</p>
- Time evolution of small-scale fields in quiet as well as active regions
 - Requirements: 0.1"; ~1min; ~30mA; 30"X30"; 0.1%
- Hanle polarization measurements
 - Requirements: NC ; NC ; <30mA ; NC ; 0.01%</p>

Hasan & The NLST Team, 2007: Concept Proposal for NLST

NLST Science Requirements

- Magnetic coupling between the photosphere and chromosphere
 - Requirements: '< 1"; < 3min; <60mA; 100"X100"; 0.1%</p>
- Emerging Flux Region
 - Requirements: '< 1"; < 3min; <60mA; 180"X180"; 0.1%</p>
- Molecular Line SP
 - Requirements: '< 1"; NC; <20mA; NC; 0.1%</p>
- Magnetic Helicity
 - Requirements: < 1"; < 3min; <60mA; 180"X180"; 0.1%</p>
- Off-limb Observations
 - Requirements: `~ 1"; < 3min; <60mA; NC; 0.01%; Scattered Light < 1%</p>

Polarimetry Requirements

- Sensitivity ~ 1 X 10⁻⁵
- Accuracy ~ 5 X 10⁻⁴
- Instrumental Polarization Requirements < 1% before modulation and <10% before demodulation
- Position of the Polarimeter and Modulation and Demodulation techniques will be critical
- Wavelength Coverage: 380nm to 2.5µ

Polarimetry with NLST

- Visible to NIR Spectro-Polarimetry (SP)
 - Multi-slit Imaging Capable (MuSIC) SP
 - High spatial, spectral and temporal resolution with limited FOV
 - Multi-line option <= 3 spectral lines simultaneously
 - High spectral resolution single slit SP
 - High spatial and spectral resolution with limited FOV and temporal coverage
 - Multi-line option > 3 spectral lines simultaneously
- Visible Light FP-based Spectro-Polarimetry
 - Either 2- or 3-etaon system (IBIS type or TESOS type)
 - Larger FOV and high spatial resolution
 - No simultaneity only near simultaneity even for a single line

Multi-slit Spectro-polarimetry

- Single-slit vs Multislit:
 - Single-line/line pair
 in single-camera
 observations
 - Availability of large format CCDs
 - Time reduction by the number of slits.

Scanning the 2D FOV

- 60" X 60" FOV
- Slit width of 0.3"
- Stokes [I, Q, U, V] are processed data not the raw data.
- Time taken to complete the scan is 17-minutes.
- Time taken for each slit position is 5seconds.

Motivation for a Multi-Slit Spectrograph

- Time limitation can be reduced by the number of slit.
- Availability of large format CCDs allow for a multi-slit configuration.
- Improvements on the narrow-band filters, particularly, the filters with square profile.

Critical Components – Special Filter

- Requires special/custom made filter with square filter profile
- Narrower the bandwidth it is better
- Better transmission for better signal level

Critical Components – Fiber Bundle

- Requires special/custom-made fiber bundle
- Smaller the fiber size is better
- Good Transmission over large wavelength region (Visible to NIR)

Concept Realization Phase

- An inter-mediate step to realize the concept
- Carried out in two phases Phase I and Phase II
 - Phase I
 - Design and development of the multi-slit SP
 - Concept proof for the filter development, usage and its limitations
 - Phase II
 - Addition of the fiber bundle
 - Concept proof of the fiber bundle development, usage and limitation

Expected Performance – Phase I

- 5-slit of 30mm height
 (~300")
- FOV covered ~ 300"X300"
- Required no. of steps ~ 190
- Dispersion = 15.8mA/pixel
- Spectral Resolution ~ 35mA
- Filter: 0.6nm FWHM Square profile
- Spectral Mask Closed width ~ 2.8mm

- Slit separation ~ 5.6mm
 (~58")
- Slit width ~ 30micron
- Time taken to scan ~
 25minutes (assuming 7secs per slit position)
- Spectral Mask open width
 ~ 2.8mm
- Beam separation ~ 2.8mm along the dispersion axis

Expected Performance – Phase II

- Front end of fiber:
 - Width X Height ~ 32micron X 8micron
 - 72X288 Fiber Bundle
 - FOV covered 23"X23" with 0.32" per 32micron
- Back end of fiber:
 - 5-linear array equivalent to 5-slits
 - Width of the linear array ~ 32micron
 - Height of each linear array ~ 32mm
 - Linear array separation ~ 5.6mm
- Equivalent Slit width ~ 32micron
- Time taken for one 23"X23" FOV < 15seconds</p>
- Rest of the parameters are the same

Additions for NLST

- Large format CCD (4KX4K)
 - Preferably a ZIMPOL type or DID type
 - Larger pixel size is better (~16micron)
- Multiple beams using dichroic filters
 - To cover different wavelength regions
- Multiple filter developments (atleast 3wavelengths)
 - Like 6302A, 8542A, & 10830A will cover Photosphere, Chromosphere & Corona

Expected Numbers for NLST

- 4KX4K (16micron square) CCD Fast Modulation (either by ZIMPOL type or DID type)
- 0.3nm Square profile filter @630.2nm line pair
- 2.15pm spectral sampling
- 140pixels for the spectral coverage
- 29 slits can be accommodated
- Achieved FOV of 30"X30" @diffraction limit

A Sample

Courtesy: Haosheng Lin (IfA, Hawaii)

