Stereoscopic Magnetography with SHAZAM

(Solar High-speed Zeeman Magnetograph)

Craig DeForest Southwest Research Institute

Summary of talk

- * What and why is SHAZAM?
- # How does a stereoscopic magnetograph work?
- * Current status of SHAZAM
- Some sample data from a prototype run
- * Conclusions

- Instrument concept for highest resolution applications: DST, SVST, (ultimately) ATST
- # Goals: <10 Gauss photon noise level, <1 sec cadence</p>
- Single exposure acquisition (to motion & seeing crosstalk)
- * Being developed under the NASA/SHP-SR&T program

SHAZAM Science Goals

- * How does magnetic flux behave on the smallest observable scales?
- * What is the fundamental length scale of the small scale solar dynamo?
- Can network heating events and bright points be explained by previously unresolved photospheric motion?

0.15", 10G (SHAZAM Y2)

0.2", 30G (Hinode)

0.10", 10G (SHAZAM Y3)

MDI

(sim: Cattaneo et al. 2004)

CDS

 Pixel size (arcsec²) at the diffraction limit is proportional to aperture (m²).

- At the diffraction limit in red, the solar photon flux is just 5x10⁸ ph. sec⁻¹ pix⁻¹ in each 0.5Å band.
- Exposure time depends on detector efficiency and desired sensitivity, not on final resolution.
- *BUT*: Exposure time requirements are set by resolution(!)

BOTTOM LINE: PHOTON STARVATION GETS WORSE WITH BETTER RESOLUTION.

The Spectral Imaging Problem: Projection

- * Spectral imagers (including magnetographs) have three independent variables: x, y, λ.
- * Detectors have two: x,y.
- * Most current technologies use scanning in y, in λ , or in some function of λ to build up an image of the 3-D space.
- Spectral stereographs collect multiple spectral orders, and treat the spectral problem as a stereoscopic one.

The Spectral Imaging Problem: Projection

- * Spectral imagers (including magnetographs) have three independent variables: x, y, λ.
- * Detectors have two: x,y.
- * Most current technologies use scanning in y, in λ , or in some function of λ to build up an image of the 3-D space.
- Spectral stereographs collect multiple spectral orders, and treat the spectral problem as a stereoscopic one.

The Spectral Imaging Problem: Projection

- * Spectral imagers (including magnetographs) have three independent variables: x, y, λ.
- * Detectors have two: x,y.
- * Most current technologies use scanning in y, in λ , or in some function of λ to build up an image of the 3-D space.
- Spectral stereographs collect multiple spectral orders, and treat the spectral problem as a stereoscopic one.

- * Spectral imagers (including magnetographs) have three independent variables: x, y, λ.
- * Detectors have two: x,y.
- * Most current technologies use scanning in y, in λ , or in some function of λ to build up an image of the 3-D space.
- Spectral stereographs collect multiple spectral orders, and treat the spectral problem as a stereoscopic one.

- * Spectral imagers (including magnetographs) have three independent variables: x, y, λ.
- * Detectors have two: x,y.
- * Most current technologies use scanning in y, in λ , or in some function of λ to build up an image of the 3-D space.
- Spectral stereographs collect multiple spectral orders, and treat the spectral problem as a stereoscopic one.

Stereoscopic instrument concept

- * Ultimately: six focal planes collect images with different polarization and dispersion characterisics. (We used four, for this experiment).
- * Post facto, the images are combined stereoscopically.
- * The data give the first two line moments in each circular polarization.

Spectral stereoscopy

- Dispersion converts wavelength shifts into spatial shift.
- * The shift differs between spectral orders.
- * Conventional correlation stereoscopy recovers the low spatial frequencies.

(A) N = +1 line image of granulation (B) N = -1 line image of granulation

Differential stereoscopy

- Converts line offsets into intensity signal in combined images.
- Subtract line images taken from opposite orders.
- The dispersion of the lines yields brightness terms proportional to d//dx; "leaky" integration gets the high spatial frequencies.
- Dispersion is chosen to minimize spatial smearing effects.
- Conventional stereoscopy (using correlation) is used to retrieve low spatial frequencies.

How well does hybrid stereoscopy work?

* Answer: pretty well.

PROOF-OF-CONCEPT OBSERVATIONS

- Stereoscopic test observations: shown to work using DST/ASP (Nov 2003: moderate seeing, low-order AO)
- SHAZAM: prototype instrument (currently proposed) for DST & SST
- Estimated capabilities: ~10 G RMS magnetograms in <100 ms at the DST (or ATST)</p>

SHAZAM status:

- * Proof-of-concept and prototype runs completed (DeForest et al. 2004; DeForest et al. 2009)
- * All required components procured
- * DST interface software ("Virtual Camera") under development
- * First 3-camera DST run planned for Spring 2009

* Prefiltering is quite narrow, to limit smearing by the dispersed continuum.

- Prefiltering is quite narrow, to limit smearing by the dispersed continuum.
- * Grating is sinusoidal for equal distribution to different orders, rejects orders higher than +/- 1.

- Prefiltering is quite narrow, to limit smearing by the dispersed continuum.
- * Grating is sinusoidal for equal distribution to different orders, rejects orders higher than +/- 1.
- Cameras are high speed, high resolution (2k x 2k
 12µm pixels, 10 fps)

* Computers acquire data on the observing deck, then reduce and frameselect overnight.

SHAZAM-P: a Prototype Magnetograph (test run with only 2 spectral orders)

- Minimal prototype experiment "on the cheap"
 Optics & DST obs. run Summer 2007: <\$30k
- * Only 1 dispersed order (RCP/LCP to get parallax)
- # 3.2 second acquisition
- * Used existing ASP polarizer and beamsplitter
- Single hard drive pipeline
- Rapid development camera software/firmware:
 written in Perl in 3 weeks from scratch

RAW 0-ORDER IMAGE

RAW 1ST-ORDER IMAGE

I+V (RCP) 1ST ORDER LINE CORE IMAGE

SHAZAM-P: 1-order pseudoemission I+V (RCP)

I-V (LCP) 1ST ORDER LINE CORE IMAGE

SHAZAM-P: 1-order pseudoemission I-V (LCP)

INITIAL QUIET-SUN MAGNETOGRAM

Initial QS magnetogram (4.2 seconds)

Conclusions

* Concept appears viable

All components procured; S/W prep in progress

* NSO/DST tabletop-observing model enabled prototype observations "on a shoestring".

* 3-camera rig is important: simultaneous exposures are absolutely required to avoid seeing crosstalk.

* Initial full-instrument run planned for Spring 2009.