Coronal Heating:

The Loops Guidepost

James A. Klimchuk NASA / GSFC

Pieces of the Coronal Loops Puzzle

* Over cross section** Along axis

The Good Ol' Days (pre SOHO)

Soft X-Ray Loops:

- Hot (T > 2 MK)
- Long-lived ($\tau_{\text{life}} >> \tau_{\text{cool}}$)
- Obey static equilibrium scaling laws
- Consistent with steady heating

Rosner, Peres, Tsuneta, Antiochos, Priest,

Then came SOHO and TRACE, and the trouble started....

EUV Loops:

- Warm (T ~ 1 MK)
- Over dense relative to static equilibrium
- Super hydrostatic scale heights
- Flat temperature profiles

Aschwanden, Warren, Winebarger, Reale, Testa,

Consider a loop.

Over dense?

* Steady heating not required (not unique solution)

Cooling Time Ratio vs. Temperature

$$\tau_{rad}/\tau_{cond} = T^4 / (nL)^2$$

Klimchuk (2003, 06)

Cooling Time Ratio vs. Temperature

$$\tau_{rad}/\tau_{cond} = T^4 / (nL)^2$$

Klimchuk (2006)

Loop Light Curves

GOES / SXI

Can be modeled as a self organized critical (SOC) system driven by footpoint shuffling and magnetic field tangling.

Lopez Fuentes, Klimchuk, & Mandrini (2006)

Multi-Stranded Loop

Single nanoflare

Nanoflare "storm"

Warren, Winebarger, & Mariska (2003)

The Isothermal / Multi-thermal "Debate"

MULTI-THERMAL

Schmelz Martens Cirtain Noglik Walsh Patsourakos etc.

ISOTHERMAL

Aschwanden Nightingale Landi Nagata Del Zanna Mason Schmeider etc.

Nanoflare Storm Duration

Nanoflare storms do not last forever.

Light curve overlap depends on storm duration.

Ugarte-Urra, Winebarger, & Warren (2006)

Lifetime and Thermal Width

EM(T) at time of max. 195 intensity

Need lifetime / thermal width consistency check

(Super) Hot Plasma

Hot plasma predicted to be very faint:

- Super hot plasma cools very quickly (short-lived)
- Takes time for evaporation to fill the loop (small density & EM)

Seen by CORONAS-F (Zhitnik et al. 2006), RHESSI (McTiernan 2008), XRT (Siarkowski et al. 2008; Schmelz et al. 2008; Reale et al. 2008); EIS (Patsourakos & K 2008; Ko et al. 2008)

Different Active Regions

Fe XII, Fe XV, Ni XVII, Fe XVII

Hinode / XRT (Schmelz et al. 2008)

Cool part not constrained by observations

Steady heating *not* plausible 20 MK equilibrium loop requires: energy flux ~ 10⁹ erg cm⁻² s⁻¹ DC: footpoint velocity ~ 100 km s⁻¹ AC: fluctuation velocity ~ 1000 km s⁻¹ Two component model: weak & strong nanoflares recur every 1 & 100 hrs energy flux ~ 10⁷ erg cm⁻² s⁻¹

Hinode / XRT

Be_m Image

Reale et al. (2008)

Simulated Line Profiles

Patsourakos & Klimchuk (2006)

Observed Fe XVII Profile

See also Hara et al. (2008)

"Reconnection" of Tangled Coronal Fields

Hinode / SOT G-band

- Coronal magnetic field becomes tangled and twisted by random footpoint motions associated with photospheric convection.
- Impulsive heating occurs via the secondary instability when the misalignment angle between adjacent strands reaches a critical value.

Parker (1983), Priest et al. (2002)

Dahlburg, Klimchuk, & Antiochos (2003, 05, 08)

THERMAL NONEQUILIBRIUM

- Dynamic behavior with steady heating!
- No equilibrium exists if the heating is concentrated close to the loop footpoints
- Cool condensations form and fall in cyclical pattern

Serio et al. (1981), Antiochos & Klimchuk (1991), Karpen et al. (2001-2008), Mueller et al. (2003-2005), Mok et al. (2008)

Heating scale height = 5 Mm = L/15Imbalanced heating (right leg = 75% left leg)

With Judy Karpen

Monolithic Loop

Intensity profile **not** like observed (uniform)

With Judy Karpen

Multi-Strand Bundle

"Uniform" intensity profile Flat temperature profile Over dense in TRACE: $n/n_{eq} = 23$

Issues with Thermal Nonequilibrium

- Condensations repeat on timescale > 2 hr
- Observed 171 loop lifetimes ~ 1 hr
- Strands must be sufficiently out of phase to produce "uniform" intensity profiles, but not so much as to produce long-lived loops
- Plausible? Even if phasing correct for one cycle, not likely to be maintained for subsequent cycles.

Key Points

- Strong evidence that many loops are bundles of unresolved strands heated by storms of nanoflares
 - True of all loops?
 - True of diffuse corona?
- Strong evidence of super-hot (~10 MK) plasma in active regions
 - Can only be produced by nanoflares
- Nanoflares are likely due to the secondary instability occurring in tangled coronal magnetic fields
- All coronal heating mechanisms produce impulsive energy release on individual magnetic flux surfaces (field lines)
 - but rapid repetition gives quasi-equilibrium conditions
- Some EUV loops may be produced by thermal nonequilibrium in multi-strand bundles

Enthalpy Based Thermal Evolution of Loops (EBTEL)

"0D" hydro code Easy to use, runs in IDL Any heating function, H(t) DEM(T,t) in transition region Heat flux saturation Non-thermal electron beam 10⁴ time faster than 1D codes

500 s nanoflare

Klimchuk, Patsourakos, & Cargill (2008)

Backup Slides

Ugarte-Urra, Warren, Brooks (2008)

DEM(T) depends on nanoflare energy distribution

Seems to best fit the observations.

Surprising! Important! Uncertain.

Schmelz et al. (2008)

Fe XVII (254)

Patsourakos & Klimchuk (2006)