Statistical studies on Coronal Mass Ejections

Udaipur Solar Observatory, PRL, Udaipur
Bangalore, Dec 2-5, 2008

Outline of the talk

1. What have we learnt from SoHO observations?
2. New views of Coronal Mass Ejections from STEREO

Morphological Properties

White light (Gopalswamy et al. 2006)

1998/06/21 19:47 UT

FeXIV -LASCO-C1, Srivastava et al. (2000)

Three part Structure

- Bright Leading edge
- Dark cavity
- Bright Knot has mostly dense prominence material

Types of CMEs

Full halo

Partial halo

Limb CME

The cone angle and the general shape of CME is maintained (Plunkett et al. 1998, Schwenn et al. 2005). Ratio between the lateral expansion and radial propagation remains constant.

Vrad=0.88 Vexp

Morphological Properties

Angular Size or apparent widths

CME Occurrence Rates

0.3 per day (solar min) to $4-5$ per day (solar max)

Srivastava et al. (2000)

CME Mass Estimates

Masses: Derived from white light images $10^{15}-10^{16} \mathrm{gm}$
-Kinetic Energy: $10^{31}-10^{32}$ ergs.

Average CME Properties

Parameter	LASCO	Solwind
Observing Duty cycle	81.7%	66.5%
$\left\langle E_{\text {kin }}\right\rangle$ (erg)	2.6×10^{30}	3.5×10^{30}
\langle Mass $\rangle(\mathrm{g})$	1.4×10^{15}	4.1×10^{15}
Mass Flux (g/day)	2.7×10^{15}	7.5×10^{15}

Kinematics

Speeds
Range of speeds: $10-3000 \mathrm{Km} / \mathrm{s}$
Average speed is $470 \mathrm{~km} / \mathrm{s}$
But varies with solar cycle
Speeds in descending phase lower than in the minimum
Maximum speed during maximum phase

Acceleration
Very fast CMEs ($>1000 \mathrm{~km} \mathrm{~s}^{-1}$ have low acceleration $\left(<1 \mathrm{cms}^{-2}\right)$

Slow CMEs ($<1000 \mathrm{~km} \mathrm{~s}^{-1}$ have higher values of acceleration ($0-80 \mathrm{cms}^{-2}$)

Height - Time profiles

Srivastava et al. (1999)

Distance -Time Plot For Balloon-Type CMEs

Projected Speeds - Distance Profiles

CME INITIATION : Lower Corona

CMEs can interact with each other

Radio signs of CME interaction

Gopalswamy et al. 2001

Coronal Mass Ejections: New Views from STEREO

Space -based Coronagraphy

Coronagraph	Year	FOV	Resolution
OSO-7	1971-1973	3.0-10 Rs	3 arc-min
Skylab	1973-1974	2.0-6.0 Rs	5 arc-sec
Solwind/P78-I	1979-1985	3.0-10 Rs	Same as OSO
SMM	$\begin{aligned} & \text { 1980, } \\ & \text { 1984-1989 } \end{aligned}$	1.6-6 Rs	30 arc-sec
LASCO	$\begin{aligned} & \text { 1995-1998 } \\ & \text { 1995- } \end{aligned}$	$\begin{aligned} & \text { 1.1-3.0, (E- } \\ & \text { corona) } \\ & 2.0-6.0, \\ & 3.7-32 \text { Rs } \end{aligned}$	11.2 arc-sec 23 arc-sec 112 arc-sec
SECCHI	2006-	$\begin{aligned} & \text { 1.4-4.0, } \\ & \text { 2.0-15 Rs } \end{aligned}$	$7.5 \mathrm{arc}-\mathrm{sec}$ $29 \mathrm{arc}-\mathrm{sec}$

> SOHO LASCO CME Rate in $1996-1997$ was
> ~ 0.5 CMEs/day

Courtesy St. Cyr. (2008), presentation at SECCHI meeting

3D RECONSTRUCTION OF CME LEADING Edge usinc Cor 1 AND COR2 IMAcES

Collaborators:
Marilena Mierla, Royal Observatory of Belgium
Bernd Inhester, Max-Planck Institute for Solar System Research

1. Motivation of the study
2. Reconstruction Techniques
(a) Tie Pointing (b) Height-Time
3. Data from COR1 and COR2 coronagraphs
4. Application of reconstruction techniques to data
5. Results

MOTIVATION

1. 3-D RECONSTRUCTION OF LEADING EDGE OR FRONT OF THE CME TO GIVE THE TRUE SPEED AND DIRECTION OF THE CME
2. UNDERSTAND THE INITIATION AND PROPAGATION OF CMES
3. IMPORTANT INPUT TO SPACE WEATHER PREDICTION

FOV: 1.1-4.0 $\mathrm{R}_{\text {sun }}$
Resolution: white light 7.5 arc-sec
Cadence: one image every 5 min
Sequence of images taken with polarizer at 3 positions 0, 120 and 240

COR2 Instrument

FOV: 2.0-15 $\mathrm{R}_{\text {sun }}$
Resolution: white light 29.4 arc-sec
Cadence: one image every 20-30 min
Sequence of images taken with polarizer at 3 positions 0, 120 and 240

RECONSTRUCTION TECHNIQUE

Tie pointing

Determine 3-d location of a feature which can be identified in both images of a STEREO pair.

The tie-pointing computes 3-d coordinates in a fixed coordinate system of a point by determining the intersection of the line-ofsights of the projected points in the image plane

20 May 2007 CME

COR1 B \& A
COR2 B \& A

RECONSTRUCTION OF THE LEADING EDGE

07:00 UT

07:20 UT

Identification of points along the leading edge.
Seen along the sun-earth line
Latitude is approximately 30 degrees south.
Longitude is expressed in Carrington longitude.

20 May 2007

?

phi=72.0
06:40 UT

phi=72.0
07:20UT
07:30UT

07:40 UT

07:50 UT

Comparison of Height Time plots

Plane-of-sky speeds
LASCO, STEREO A and B ~ $230 \mathrm{~km} / \mathrm{s}$

True radial speed
RECONSTRUCTED ~500 km/s

RECONSTRUCTED LEADING EDGE IN COR1 and COR2 IMAGES

True Speed of the estimated leading edge is approximately $600 \mathrm{Km} / \mathrm{s}$

Srivastava et al. 2008
(to be submitted to Topical issue, Solar Physics)

Associated with May 20, 2008 CME

Courtesy: Kilpua et al. 2008, Solar Physics (Accepted)

HEIGHT TIME TECHNIQUE FOR RECONSTRUCTION OF CME FEATURE IN STEREO A \& B

Method:

Height-Time (HT) plots of the same identified feature in COR1-A and -B images

- from a simple geometry: 3D coordinates of the coronal feature

Assumption:

- the 2 spacecraft are in the ecliptic plane (errors < 3°)

Geometry

GEOMETRY CALCULATION

$$
\text { long }=\arctan \left(\tan \left(\frac{\gamma}{2}\right) \frac{a-b}{a+b}\right),
$$

$$
l a t=\arctan \frac{R_{2 d}}{z},
$$

HERE, Y IS THE ANGLE BETWEEN THE SPACECRAFTS
$a=-R_{A} \sin \varphi_{A}$,
$b=R_{B} \sin \varphi_{B}$
Ф IS THE POSITION ANGLE MEASURED

$$
\vec{R}_{2 d}=\frac{R_{B} \sin \phi_{B} \hat{l}_{A}-R_{A} \sin \phi_{A} \hat{l}_{B}}{\sin \gamma}
$$

R IS THE HEIGHT MEASURED IN PROJECTED PLANE

Height-time Plots for a selected feature: INPUT

CME at E-limb: 15 May 2007

CME in the South: 20 May 2007

Diagram 3-d coordinates of the leading edge: Output

$\mathrm{Va}=125 \mathrm{~km} / \mathrm{s}$
$\mathrm{Va}=242 \mathrm{~km} / \mathrm{s}$
$\mathrm{Vb}=99 \mathrm{~km} / \mathrm{s}$
$\mathrm{V}=169 \mathrm{~km} / \mathrm{s}$
$\mathrm{Vb}=253 \mathrm{~km} / \mathrm{s}$
$\mathrm{V}=548 \mathrm{~km} / \mathrm{s}$

SUMMARY

1. RECONSTRUCTION TECHNIQUES APPLIED TO MAY 20, 2007 CME: TIE-POINTING AND HEIGHT-TIME,TIME TECHNIQUES
2. RESULTS OBTAINED FROM BOTH THE TECHNIQUES YIELD SIMILAR RESULTS
3. THE VALUES OF TRUE SPEEDS ARE HIGHER THAN THE PROJECTED SPEEDS (AS MEASURED INDIVIDUALLY BY ANY SPACECRAFT)
4. THESE TECHNIQUES ARE EFFECTIVE TOOLS TO GET TRUE OR RADIAL SPEEDS OF LEADING EDGE.
5. MAJOR IMPLICATIONS ON ARRIVAL TIME AND MAGNITUDE OF GEOMAGNETIC STORMS (SPACE WEATHER PREDICTION MODELS CAN BE IMPROVED!)
