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Scope of the Talk

¢ The light scattering technique is used in many disciplines of science and
engineering as a diagnostic tool.

¢ We look at some aspects of elastic scattering of light by a collection of
particles which have relevance to the understanding of light scattering by dust.
It will be assumed in all future discussions that the collection is random and
tenuous. Scattering process is depicted below:




Approaches to Solution

DIRECT METHOD: In this approach a model for the scattering problem is
assumed. Parameters of the model are varied to achieve best fit to the
observed quantities. This is the approach is almost invariably used to
characterize dust particles.

INVERSE METHOD: This approach attempts is to characterize the scatterers
by a suitable analysis of the scattered fields.

In either case, one needs the knowledge of theories which describe the
scattering by an isolated single scatterers.

We begin with a survey of solutions to the problem of scattering of light by an
isolated particle. We return to ensemble later and discuss two important
quantities which contain information on scatterers: extinction spectrum and
phase function..



Single Particle: Exact Solutions

ANALYTIC METHODS: Mie theory and its extensions have been used to
obtain exact analytic solutions for scattering of light by: Homogeneous and
Concentric Spheres, Magnetic (Kerker et al. JOSA 73 (1983) 765) and Chiral
Spheres (Bohren and Huffman 1983), Homogeneous and Concentric Infinitely
Long Cylinders, Homogeneous and Concentric Spheroids and Ellipsoids etc.

NUMERICALMETHODS: 1. T-matrix or Extended Boundary Condition Method
(ECBM) is one of the first tools developed to treat more irregularly shaped
particles. Disadvantages are convergence for certain shapes and difficulty in
dealing with particle heterogeneities.

2. Discrete Dipole Approximation (DDA) has been extensively used for Dust.
Disadvantage: algorithms are computationally intensive in both time and
memory and convergence problems may occur for large refractive indices.

3. Finite Difference Time Domain Method (FDTD) has been extensively used
in other fields. It appears to be slower than the DDA but is more stable for
large refractive indices.
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Single Particle:Exact Solutions

A comparison of computational demands of various numerical techniques has
been performed by Wriedt and Comberg, JQSRT 60 (1998) 411-423 for a
cube on a IBM RISC/6000-595-workstation.

A review of numerical methods used in elastic light scattering theories can be
found in (i) Wriedt Part. Part Syst. Charact, 15 (1998) 67-74 (ii) Light
scattering by Non-Spherical Particles, Ed. M | Mishchenko, J W Hovenier and
L D Travis , Academic Press (2000)(iii) Scattering, Absorption and Emission of
Light by Small Particles, M | Mishchenko, L D Travis and A Lacis , Cambridge
University Press (2002).

Some useful sites for light scattering informations and computer programs
are: 1. NASA ( M Mishchenko); 2. University of Bremen ( T Wriedt) 3. St.
Petersburg State University (N V Voshcinnikov); 4. University of Amsterdam
(A Hoekstra); 5. DDA (P Flatau); 6. B T Draine (optical properties)
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Single Particle: Approximate Solutions

For large particles of irregular shapes it is often advantageous to use
approximate methods, particularly for those who believe that it is better to use
approximate theory for right particle rather than right theory for wrong particle.

APPROXIMATION METHODS~~~~~~~~ VALIDITY DOMAINS
Rayleigh x<<1; |mx|<<1
Rayleigh-Gans Im-1|<<1; x|m-1}<1
S-approximation Im-1]<<1; x>1
Anomalous Diffraction and Eikonal |Im-1}<<1
Diffraction x>>1; Im m large
WKB Approximation x>>1, Im-1[x>>1
GO Approximation same

The EA in conjunction with GO has been used in the analysis of large
interplanetary dust particles.

A comparison of many of these methods can be found in  “Light Scattering by
Optically Soft Particles: Theory and Applications” by S K Sharma and D J
Somerford, Springer-Praxis Books (2006).



Dust Particle Shape Models 1

¢ The shape of interstellar grains remains uncertain. Even the simple
homogeneous sphere model is consistent with observed interstellar extinction,
observed infrared emission and X-ray scattering. Thus, Bare grains of
spherical and spheroidal particles are being used. The Mie theory and T-
maitrix can be applied to such shapes.

¢ Composite or Heterogeneous Particles: Effective medium theories (EMTSs)
have been used. Applicability: A general conclusion is that for Rayleigh
particles the volume fraction of embedded particles should not exceed 40-60
percent. For non-Rayleigh Particles it should not exceed 10%.

¢ A layered sphere model (carbon, silicate and vacuum in equal volume
factions) was examined by Voshchinnikov et al (Astron Astrophys 2003) in the
context of interstellar dust. It was found that EMT rules have acceptable
accuracy for whole range of particles sizes provided the porosity does not
exceed about 50%.




Dust Particle Shape Models 2

¢ Aggregates: Borghese et al. ( Scattering from Model Nonspherical Particles
(2002) Springer) considered aggregates of spheres of silicates, amorphous
carbon and vacuum occupying equal volumes and compared exact results
with calculations of Voshchinnikov. Results show several differences in
behaviour of the cluster cross-section with respect to results of multilayered
spheres.

The extinction from a dispersion of clusters was noted to be strikingly
different from a dispersion of equal volume spheres.

¢ Wright has examined scattering by fractal shapes generated by the clustering
process using DDA ( Wright E L in Interstellar Dust, IAU Symposium No. 135
(1989) 337). Clusters with upto about 300 spherical particles were examined.




Dust Particle Shape Models 3

¢ Chiapetta (1981) has modeled roughness by assuming that
m(r)—1 o« (m—1)/[1+""]

Physically this means that refractive index decreases continuously in the
region close to the surface. The EA was used for forward scattering and for
backward scattering geometrical optics was used. The predictions of this
model have been found to be in good agreement with the microwave
analogue scattering measurements of Zerull et al. (1977) for irregular compact
and fluffy particles for scattered intensity as well as polarization.
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Dust Particle Shape Models 4

¢  Bourrely et. al (1986) modeled roughness using a fractal description. They
introduced deviations from a perfect sphere by adding smaller and smaller
circles. There basic finding was that for large soft particles the roughness
should result in rise in backscattering.

¢ They used in there calculations the EA. However, T-matrix can be used for
exact calculations as these particles were considered spherically symmetric.
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Dust Particle Shape Models 5

¢ Chebyshev Particles: These are obtained by continuously deforming a sphere
by means of a Chebyshev polynomial of degree n (Wiscombe and Mugani
1986). Their shape is given by

r(cos@)=R[1+CT (cosn0)], Z|<1

where R is the radius of the unperturbed sphere, =  is the deformation
parameter and 7' = cosndis the Chebyshev polynomial of degree n.




Rough Particles




Anomalous Diffraction Approximation

¢ For large particles, the approximations become important. Anomalous
diffraction or the eikonal approximation is one such method.‘m — 1‘ < 1]

Q0 =(2/P)R [[aP[1-e""""] |

-
0 =(1/P) | dP[1—e"] '

Note the simplicity of expressions. FurWer, dividing the projected area into equal
area elements and counting the geometric lengths, a probability function p(l)dl
can be defined that gives the probability of length between | and I+dl. With this
interpretation one can write:

0 =2R[[1-""Vp()dl, 0 =[[1—e"]p(l)d

Above expressions are essentially independent of size of the particle. Thus, in
problems involving polydisperse particles computer resources required are much
much less.




Inverse Scattering

¢ The idea here is to deduce size distribution from the extinction spectrum. For a
given size parameter x=ka=2malA, and refractive index m :

th=21TNerxt(m,x)azf(a)da

(4

One way to invert this equation is to choose and try appropriatef (@) . But this
does not guarantee a Unique solution. For example, there are at least fifteen dust
models that differ in composition and size distribution but simultaneously satisfy
the local extinction, infrared emission and abundances constraints. Second way is
to use approximate expressions for extinction efficiency. For example, if we use

(ADA)=2(1—|—£)+2(2£)1/2J_3/2(p) p=(md/A)(m—1)

ext p 2 p

for a Mie particle in the equation for K, it is possible to invert it analytically. It is
also possible to use the mean value theorem  of the integral calculus and
determine the key parameters of the distribution and then construct the distribution
(Roy and Sharma, Appl. Opt. 1997) .
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Inverse Scattering

¢ We have recently considered the inversion without employing any approximation.
For the case of monomodal distribution of Mie particles, we have demonstrated
that an extinction spectrum, in general, has some easily identifiable regions where
the extinction-frequency relationship can be approximated by simple formulae
involving the first four moments. EXAMPLE: Linear Growth can be expressed as
(Rov and Sharma. J Opt A: Pure and App Opt. 7 (2005) 675)

e —— . . Kextzan[AV_B]

7\ _ Naively, such a form is possible only if

Tty i o e ki Qext -~ ll (V a> a 12
and thus,

_ 3 2
K =2nN|lva—la]

ex

r.;'i:,,, 12 i [, 1, depend only on m and may be determined
using any standard distribution.

QUESTION: Can the same analysis be redesigned for application to the well
known extinction curve for interstellar dust? There are two differences here from
our earlier analysis. 1. We now have mltimodal distributions and 2. The refractive
index varies with wavelength.




Parametric Phase Function

¢ One of the Importance of phase function is in the solution of radiative transfer
equation. Henyey Greenstein phase function and modifications.

¢ |n an earlier work ( Sharma , Roy and Somerford JQSRT 60 (1998) 1001), we
showed that the phase function for the scattering by a small particle can be
expressed as :

P(0)2a0+a1cos9+a200529+a300339+a4cos49,

where 4, a, a,a,a, canbe expressedintermsof p(0), P(w/2), P (m)
and slope of the phase function at /2 or the asymmetry parameter g.

x<2;, g<0.6

For a maximum particle size in dust
to be 0.2 micron, the maximum
size parameter at wavelength
6000 A is about

x=1




Parametric Phase Function

¢ Possible use of this phase function for radiative transfer calculations was
discussed by us (Sharma, Shah and Somerford, J Opt (India) 28 (1999) 123).
However, we did not made any specific dust calculations. Phase functions

calculated by Draine (2003) for Milky way dust clearly show the desirability of
use of this phase function.
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FiG. 6. Scattering phase function for the WDO01 Milky Way dust model
at three wavelengths (solid lines) compared with the Henyey-Greenstein
phase function ¢p and our new phase function ¢a<i. For A = 0.4 yum a
nine-term Legendre polynomial representation is also shown.




Parametric Phase Function

¢ Another possible use of this phase function could be to obtain size distribution
in the ensemble. For this purpose what we have do is that we parametrize

PO)=x+Bx+yx’+6x +ex"
Similarly we also parametrize phase function at other angles and write
2 3 4
P(O)=A +A x+A x"+A X +A, x

where A ,A ,A ,A A, are independent of X .  For a distribution
of particle sizes, one can therefore write:

$(0)=C +C x+C,x"+C,x'+C, x’ X'= [ x" f (x) dx

Employing this equation, it is straightforward to calculate moments of the
distribution and hence the distribution itself.




Summary

¢ The presentation | have made can be summed up as follows:

¢ 1. We made a survey of Exact and Approximate methods for light scattering
by a single isolated particle suitable for shapes used in dust modelling.

¢ 2 We outlined some theoretical extinction and phase function analyses in a
general set up. These with appropriate situation specific details can be used
to good effect in the context of dust.




