

Spectroscopic study of Carbon-Enhanced Metal-Poor stars

Partha Pratim Goswami, Aruna Goswami Indian Institute of Astrophysics, Bangalore

INTRODUCTION

- Metal-poor stars carry imprints of the early nucleosynthesis and early Galactic chemical evolution.
- A fraction of metal-poor (CEMP, CH and Ba) stars exhibit enhanced abundances of heavy elements in their atmosphere.
- The origin of the enhanced heavy elements observed in CEMPs stars are attributed to s-process nucleosynthesis occuring in a binary companion (McClure et al., 1980; Lucatello et al., 2005).
- The observed surface chemical composition of CEMP-r/s stars

with enhancement of both s- and r-process elements remains a puzzle as far as their origin is concerned.

- For these stars, the heavy element abundances cannot be explained either by s- or r-process nucleosynthesis alone. An alternative process called 'i-process (intermediate process) nucleosynthesis' is suggested as a possible production mechanism.
- Through Chemical composition studies, we can understand the origin of heavy elements in CEMP-r/s stars. As a case study, we have performed detailed spectroscopic analysis of three stars (HD 145777, HE 2144-1832 and HE 0017+0055) based on High-Resolution Spectra obtained using HCT/HESP.

GOALS

 To understand the origin of abundance peculiarities observed in CEMP-r/s stars through detailed chemical composition study, and hence, to understand the formation mechanisms of these stars and to examine whether i-process can reproduce the observed abundances in the CEMP-r/s stars HE 2144-1832 and HE 0017+0055.

Derived Abundance Ratios and Star types

Star	[Fe/I	H] [Is	/Fe]	[hs/Fe]	[hs/ls]	$\frac{{}^{12}C}{{}^{13}C}$
HD 145777	-2.17	7 0).98	1.48	0.50	5.45
HE 0017+0055	-2.46	31	L.07	2.28	1.21	3.64
HE 2144-1832	-1.63	3 0	0.93	1.58	0.65	2.50
Star	[Fe/H]	[C/Fe]	[Ba/Fe	e] [Eu/Fe]	[Ba/Eu]	Star type
Star HD 145777	[Fe/H] -2.17	[C/Fe] 2.45	[Ba/Fe 1.27	e] [Eu/Fe] 0.80	[Ba/Eu] 0.47	Star type CEMP-s
Star HD 145777 HE 0017+0055	[Fe/H] -2.17 -2.46	[C/Fe] 2.45 2.73	[Ba/Fe 1.27 2.30	e] [Eu/Fe] 0.80 2.14	[Ba/Eu] 0.47 0.16	Star type CEMP-s CEMP-r/s

Formation scenarios of CEMP-s and CEMP-r/s stars

Parametric model based study : i-process

Neutron-capture Nucleosynthesis

s-process	i-process	r-process	
$ au_{n} >> au_{eta}$	$ au_{\mathbf{n}} < au_{eta}$	$\tau_{n} << \tau_{\beta}$	
$N_n pprox 10^{7-10}/cm^3$	$N_n pprox 10^{11-15}/cm^3$	$N_n \approx 10^{20-25}/cm^3$	
Sites \rightarrow Low and	$Sites \to Low \text{ and }$	Sites \rightarrow Supernovae and	
Intermediate mass	Intermediate mass	Neutron star mergers	
AGB stars	AGB stars		

CONCLUSIONS

• The absence of Tc lines and the low values of $\frac{{}^{12}C}{{}^{13}C}$ indicate the extrinsic nature of carbon and heavy elements of the stars. Hence, binary mass transfer scenario is the most probable scenario for the observed overabundance of the heavy elements.

• HD 145777 is found to show the characteristic properties of CEMPs stars. The dominant process responsible for the observed abundances is found to be the s-process.

• HE 2144-1832 and HE 0017+0055 exhibit the characteristic properties of CEMP-r/s stars. The parametric model based studies of i-process can satisfactorily reproduce the observed abundances of heavy elements.

E-mail ID: partha.pg@iiap.res.in