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1. Observations with Hinode

Hinode (Solar-B) launched on 22 September 2006. The Solar Optical Telescope (SOT) has an

aperture of 50 cm featuring an image stabilization system consisting of a piezo-driven tip-tilt mirror.

The Spectral-polarimeter (SP) generates Stokes IQUV spectral images.

http://solar-b.nao.ac.jp
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Observations with Hinode (cont.)

Comparison of G-band images

from a ground based solar ob-

servatory (the DST) and the

Hinode/SOT.

Courtesy Friedrich Wöger and

Kevin Reardon, Sacramento

Peak Observatory.
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Observations with Hinode (cont.)

Apparent vertical magnetic flux density, BL
app. of the quiet Sun over a field of view of

302′′ × 162′′. The grey scale saturates at ±50 Mx cm−2. 2048 steps to 5 s.

〈|BL
app|〉 = 11.7 Mx cm−2. From Lites et. al. 2008, ApJ 672, 1237
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Observations with Hinode (cont.)

Apparent horizontal magnetic flux density, BT
app, of the quiet Sun over a field of view of

302′′ × 162′′. The grey scale saturates at ±200 Mx cm−2. 2048 steps to 5 s.

〈BT
app〉 = 60.0 Mx cm−2. From Lites et. al. 08
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Observations with Hinode (cont.)

Red and green: contours

of BL
app = 24 Mx cm−2,

respectively positive and

negative. Yellow : contours

of BL
app = 100 Mx cm−2.

Blue contours correspond

to BT
app = 122 Mx cm−2.

Horizontal flux preferentially

occurs at locations between

lanes and granule centers.

From Lites et. al. 08
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Observations with Hinode (cont.)

Deep mode Stokes spectra with an integration

time of 67.2 s. rms polarization in the contin-

uum of 3 × 10−4. From a 2-hour time series

Lites et al. obtain 〈BL
app〉 = 11.0 Mx cm−2.

〈BT
app〉 = 55.3 Mx cm−2. From Lites et. al. 08
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2. Numerical simulation of near surface magnetoconvection

1.4 Mm

1.4 Mm

4.8 Mm

τ = 1

4.8 Mm2.
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surface

convection zone

convection zone base

τ = 1

computational domain

Typical size of a three-dimensional computational box (left) on scale with the convection

zone boundaries (right)
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Application examples of CO5BOLD (Courtesy Sven Wedemeyer-Böhm)
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Numerical simulation of near surface magnetoconvection (cont.)

Simulation of solar granulation with

CO5BOLD. 400 × 400 × 165 grid cells,

11.2 × 11.2 Mm, Mean contrast at

λ ≈ 620 nm is 16.65%.

Courtesy M. Steffen, AIP

Simulation of a red supergiant with

CO5BOLD. 2353 grid cells,

mstar = 12m⊙, Teff = 3436 K,

Rstar = 875R⊙

Courtesy Bernd Freytag
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Numerical simulation of near surface magnetoconvection (cont.)

Two-dimensional radiation-hydrodynamic simulation of surface convection including the

chromospheric layer. The dimensions of the computational domain are: Width,

5600 km; Height above the surface of τ = 1, 1700 km; Depth below this surface level:

1400 km.

S. Wedemeyer et al. 2004, A&A 414, 1121
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Numerical simulation of near surface magnetoconvection (cont.)

For a basic example of a shock capturing numerical scheme, consider a

piecewise constant reconstruction with discontinuities at cell interfaces

(S.K. Godunov, 1959).
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Numerical simulation of near surface magnetoconvection (cont.)

Solving the shock-tube problem for obtaining the fluxes at cell interfaces
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Numerical simulation of near surface magnetoconvection (cont.)

Solving the shock-tube problem for obtaining the fluxes at cell interfaces
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Numerical simulation of near surface magnetoconvection (cont.)

Solving the shock-tube problem for obtaining the fluxes at cell interfaces
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Numerical simulation of near surface magnetoconvection (cont.)

Solving the shock-tube problem for obtaining the fluxes at cell interfaces
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2.1. MHD-simulation from the convection zone to the chromospher e

The three-dimensional computational domain encompasses the integral layers from the

upper convection zone to the middle chromosphere.

1.4 Mm

1.4 Mm
τ = 1

4.8 Mm

2.
8 

M
m

4.8 Mm
B0

With 1203 grid cells, the spatial resolution in the horizontal direction is 40 km, while in

the vertical direction it is 20 km throughout the photosphere and chromosphere

increasing to 50 km through the convection-zone layer.
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MHD-simulation from the convection zone to the chromosphere (cont.)

The ideal MHD-equations can be written in conservative form as:

∂U

∂t
+ ∇ · F = S ,

where the vector of conserved variables U , the source term S due to gravity and

radiation, and the flux tensor F are

U = (ρ, ρv, B, E) , S = (0, ρg, 0, ρg · v + qrad) ,

F =

0

B

B

B

B

B

B

B

@

ρv

ρvv +
“

p + B·B
8π

”

I − BB
4π

vB − Bv
“

E + p + B·B
8π

”

v − 1

4π (v · B) B

1

C

C

C

C

C

C

C

A

.

The tensor product of two vectors a and b is the tensor ab = C with elements cmn = ambn.
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MHD-simulation from the convection zone to the chromosphere (cont.)

The total energy E is given by

E = ρǫ + ρ
v · v

2
+

B · B

8π
,

where ǫ is the thermal energy per unit mass. The additional solenoidality constraint,

∇ · B = 0,

must also be fulfilled. The MHD equations must be closed by an equation of state which

gives the gas pressure as a function of the density and the thermal energy per unit mass

p = p(ρ, ǫ) ,

usually available to the program in tabulated form. The radiative source term is given by

qrad = 4πρ

Z

κν(Jν − Bν)dν ,

Jν(r) =
1

4π

I

Iν(r, n)dΩ , I(r, n) = I0e
−τ0 +

Z

τ0

0

“σ

π
T 4(τ)

”

e−τdτ
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MHD-simulation from the convection zone to the chromosphere (cont.)

Common boundary conditions for the thermal variables and velocities

∂vx,y

∂z
= 0 ; vz = 0 ; ∂ǫ

∂z
= 0 or ∂2ǫ

∂z2 = 0

periodic

periodic

∂vx,y

∂z
= 0 ;

∫

ρvz dσ = 0 ; outflow: ∂s
∂z

= 0

inflow: s = const

x

z
y

Both runs have periodic lateral boundary conditions in all variables. Open bottom

boundary in the sense that the fluid can freely flow in and out of the computational

domain under the condition of vanishing total mass flux.

Reflecting (closed) top boundary in run v10. Open top boundary in run h20.
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MHD-simulation from the convection zone to the chromosphere (cont.)

Different boundary conditions for the magnetic field

v10

Bx,y = 0 ; ∂Bz
∂z

= 0

periodic

periodic

Bx,y = 0 ; ∂Bz
∂z

= 0

z

x

y

h20

∂Bx,y,z

∂z
= 0

periodic
periodic

outflow:
∂Bx,y,z

∂z
= 0

inflow: By = Bz = 0, Bx = const.

z

x

y

Bx = 20 G
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MHD-simulation from the convection zone to the chromosphere (cont.)

Different initial states for the magnetic field

v10

z
y

x

Initial homogeneous, vertical, unipolar

B-field of 10 G.

h20

= 0Bz
y

x

Fluid that enters the simulation domain

from below carries horizontal magnetic

field of a uniform flux density of 20 G and

of uniform direction parallel to the x-axis
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MHD-simulation from the convection zone to the chromosphere (cont.)

Growth of magnetic energy in the computational box of run h20 and

mean absolute vertical magnetic field strength at a fixed geometrical height

corresponding to the mean optical depth unity, 〈|Bz|〉(〈τ500 nm〉 = 1).
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MHD-simulation from the convection zone to the chromosphere (cont.)

Vertical cross sections through 3-D simulation domain
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Colors indicate 0 ≤ log |B| ≤ 3.0

h20

Colors indicate 0.5 ≤ log |B| ≤ 2.5
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3. Structure and development of the horizontal magnetic fiel d

Horizontally and temporally averaged absolute vertical and horizontal magnetic flux

density as a function of height for both runs.

run v10:
〈|Bhor|〉/〈|Bver|〉(350 km) = 2.5

run h20:
〈|Bhor|〉/〈|Bver|〉(250 km) = 5.6
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Structure and development of the horizontal magnetic field (cont.)

Snapshot of Bhor and Bver of run h20 in the horizontal section of 〈τ500 nm〉 = 1.

Bhor

areal fraction with Bhor > 5 mT = 17%

Bver

areal fraction with Bver > 5 mT = 2.2%
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Structure and development of the horizontal magnetic field (cont.)

Vertically directed Poynting flux, 〈Sz〉, 〈Bhor〉, and 〈|Bz|〉 as a function of time and

height in the atmosphere.
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The surface of optical depth unity acts as a separatrix for the vertically directed Poynting

flux.

S =
1

4π
(B × (v × B))
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Structure and development of the horizontal magnetic field (cont.)

Logarithmic current den-

sity, log |j|, in a vertical

cross section (top panel)

and in four horizontal cross

sections in a depth of

1180 km below, and at

heights of 90 km, 610 km,

and 1310 km above the

average height of optical

depth unity from left to

right, respectively. The ar-

rows in the top panel in-

dicate the magnetic field

strength and direction.

From Schaffenberger, Wedemeyer-Böhm, Steiner, and Freytag, 2006, ASP Conf. Ser., Vol. 354, p. 345
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3.1. Comparison with polarimetry from Hinode

Lites et al. (2007) found from the deep mode series

〈BT
app〉

〈BL
app〉

=
55.3 Mx cm−2

11.0 Mx cm−2
≈ 5 .

From the simulation we find

〈Bhor〉

〈|Bver|〉
=

8

<

:

25 G/10.2 G = 2.5 for run v10

19.5 G/3.8 G = 5.6 for run h20
.

But remember the difference between apparent and true magnetic flux density!
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Comparison with polarimetry from Hinode (cont.)

From the two simulation runs, we synthesized the Stokes profiles of both 630 nm Fe I

spectral lines observed by the Hinode SP. Profiles were computed with the radiative

transfer code SIR along vertical lines of sight ( disk center) with a spectral sampling of

2 pm.

I630 nm Vtot 630 nm

For a faithful comparison with the results of Lites et al. we subject the synthetic profiles

to exactly the same procedure for conversion to apparent flux density as was done with

the real data.
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Comparison with polarimetry from Hinode (cont.)

The conversion to apparent flux densities proceeds by first computing

Vtot = sign(Vblue)
|
R

λ0

0
V (λ)dλ| + |

R

∞

λ0
V (λ)dλ|

Ic

R

dλ
,

and

Qtot =

R

Q(λ)Qmask(λ)dλ

Ic

R

Qmask(λ)dλ
,

where Q is mesured relative to the “preferred-frame azimuth” φr , viz, relative to the

projection of the magnetic field vector on the plane of sky. Qmask is a weightening

factor that is the normalized sum of all the Q-profiles in the preferred-frame azimuth.

Second , we compute Vtot and Qtot for a standard atmosphere with a given (known)

set of homogeneous magnetic fields for establishing a calibration curve.
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Comparison with polarimetry from Hinode (cont.)

Calibration curve from Lites et

al. 07 derived from a Milne-

Eddington atmosphere with

a homogeneous horizontal

magnetic field for Qtot and a

magnetic field inclined by 45◦

for Vtot.
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Comparison with polarimetry from Hinode (cont.)

Lites et al. (2007) found from the deep mode series

〈BT
app〉

〈BL
app〉

=
55.3 Mx cm−2

11.0 Mx cm−2
≈ 5 .

From the simulation we find

〈Bhor〉

〈|Bver|〉
=

8

<

:

25 G/10.2 G = 2.5 for run v10

19.5 G/3.8 G = 5.6 for run h20
.

From the synthesized Fe I 630 nm Stokes profile pair we find

〈BT
app〉

〈BL
app〉

=

8

<

:

11.5 G/7.5 G = 1.5 for run v10

24.8 G/8.8 G = 2.8 for run h20
.
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4. The structure of internetwork magnetic elements

Apparent vertical magnetic flux density BL
app of the quiet Sun over a field of view of

302′′ × 162′′ observed from the Hinode space observatory. The grey scale saturates

at ±50 Mx cm−2. 2048 steps to 5 s.
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The structure of internetwork magnetic elements (cont.)

Stokes-V profiles across a magnetic element of the internetwork from the Hinode data.

A

Ar

b
a

ar

b

V

λ

zcv

δA :=
Ab − Ar

Ab + Ar

sign(δA) = −sign(
d|B|

dτ
·
dv(τ)

dτ
)

Solanki & Pahlke, 1988; Sanchez Almeida

et al., 1989
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The structure of internetwork magnetic elements (cont.)

si
gn

( 
  A

)
LO

S
V

to
t

I
63

0 
nm

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1.6

-0.8

0.0

0.8

1.6

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1.6

-0.8

0.0

0.8

1.6

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1.6

-0.8

0.0

0.8

1.6

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1.5

0.0

1.5

3.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1.5

0.0

1.5

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1.6

-0.8

0.0

0.8

1.6

2.4

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1

0

1

2

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0

10

20

30

40

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0

10

20

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0

1

2

3

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.90

0.95

1.00

1.05

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.95

1.00

1.05

1.10

1.15

1.20

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.90

0.95

1.00

1.05

1.10

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.8

0.9

1.0

1.1

1.2

1.3

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.9

1.0

1.1

1.2

1.3

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.7

0.8

0.9

1.0

1.1

1.2

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.8

0.9

1.0

1.1

1.2

a
δ

cb ed g
v

f

Columns a-c: observational data obtained with the spectro-polarimeter of Hinode/SOT. Columns d

and f : synthetic data from the 3-D MHD simulation. Columns e and g: same as d and f but after

application of the SOT-PSF to the synthetic intensity maps. Distance between tick marks is 0.5′′.

From Rezaei, Steiner, Wedemeyer-Böhm et al. 2007, A&A 476, L33
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The structure of internetwork magnetic elements (cont.)
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Variation in δA across magnetic elements from the Hinode data (top row) and the

simulation (bottom row).
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The structure of internetwork magnetic elements (cont.)
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





⇒ δA > 0

Vertical cross section through the sim-

ulation box. Colour displays the

logarithmic magnetic field strength,

arrows the velocity field, black contours

the electric current density normal to

the plane. The white vertical lines

indicate ranges of either positive or

negative area asymmetry, δA.
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5. The magnetic field of the internetwork chromosphere

Synoptic summary of magnetoconvective simulation from the convection zone

to the chromosphere.
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The magnetic field of the internetwork chromosphere (cont.)

Case v10: boundary and initial conditions for the magnetic field

v10

Bx,y = 0 ; ∂Bz
∂z

= 0

periodic

periodic

Bx,y = 0 ; ∂Bz
∂z

= 0

z

x

y

v10

z
y

x

Initial homogeneous, vertical, unipolar

B-field of 10 G.
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The magnetic field of the internetwork chromosphere (cont.)
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z = 1300 km
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Horizontal sections through 3-D computational domain. Color coding displays log |B| with

individual scaling for each panel. Left: Bottom layer at a depth of 1210 km. Middle: Layer 60 km

above optical depth τc = 1. Right: Top, chromospheric layer in a height of 1300 km. White

arrows indicate the horizontal velocity on a common scaling. Longest arrows in the panels from left

to right correspond to 4.5, 8.8, and 25.2 km/s, respectively. Rightmost: Emergent intensity .
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The magnetic field of the internetwork chromosphere (cont.)
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Snapshot of a vertical section showing log |B| (color coded) and velocity vectors projected on the

vertical plane (white arrows). The b/w dashed curve shows optical depth unity and the dot-dashed

and solid black contours β = 1 and 100, respectively. movie with β = 1 surface

Schaffenberger, Wedemeyer-Böhm, Steiner & Freytag, 2005, in Chromospheric and Coronal Magnetic Fields,

Innes, Lagg, Solanki, & Danesy (eds.), ESA Publication SP-596
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The magnetic field of the internetwork chromosphere (cont.)
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Snapshot of a vertical section showing log |B| (color coded) and B projected on the vertical

plane (white arrows). The b/w dashed curve shows optical depth unity and the dot-dashed and

solid black contours β = 1 and 100, respectively. Schaffenberger, Wedemeyer-Böhm, Steiner & Freytag,

2005, in Chromospheric and Coronal Magnetic Fields, ESA Publication SP-596
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5.1. Wave propagation in a magnetically structured atmosph ere

Time sequence of a two-dimensional simulation of magnetoconvection starting with an

initial homogeneous vertical magnetic field of 100 G.

Left: Logarithmic magnetic field strength 1368 s after starting with an initial

homogeneous vertical field of 100 G. Right: Logarithm of thermal to magnetic energy

density (plasma-β) together with the conour of β = 1.
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Wave propagation in a magnetically structured atmosphere (cont.)

Residual velocity amplitude due to an oscillatory velocity perturbation along the bottom

vz(t) = v0 sin(2π(t − t0)ν)

with an amplitude of v0 = 50 m/s and a frequency of ν0 = 20 mHz from t = 1200 s

to t = 1450 s. Note the fast magnetic wave that gets refracted.

From Steiner, Vigeesh, Krieger et al.: 2007, Astron. Nachr. / AN 328, 323
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Wave propagation in a magnetically structured atmosphere (cont.)

Wave travel time vs. canopy height.

Wave travel time across the layer from z = 200 km to z = 420 km as a function of

horizontal distance (thick solid curve). Superposed is the contour of β = 1 (magnetic

and thermal equipartition), for which the height is indicated in the right hand side

ordinate (dash-dotted curve). Note that the travel time markedly decreases where the

low β region intrudes this layer.
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Conclusion (cont.)

Strong horizontal fields in numerical simulations of the in-

ternetwork
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Conclusion (cont.)

Strong horizontal fields in numerical simulations of the in-

ternetwork
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Conclusion (cont.)

Strong horizontal fields in numerical simulations of the in-

ternetwork
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Synthesized Stokes parameters yield 〈Bhor〉/〈Bver〉 =

1.5 . . . 2.8
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Conclusion (cont.)
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