

Low luminosity accretion flows

- 10^6 - 10^9 M_D BHs at centers of galaxies
- most luminous objects, e.g., quasars, AGN
- low luminosity BHs in nearby galaxies; why this dichotomy? may be there is just not enough mass available?
- $L = \eta Mc^2$; $\eta \sim 0.1$ for thin disks
- $\eta \sim 10^{-(a \text{ few})}$ for LLBHs (using \mathring{M} inferred from large scales)
- → disk hot & thick; accretion energy not coupled to electrons
- low η or low M for low luminosity? requires detailed modeling

Sgr A*: Galactic center BH

4x10⁶ M_P black hole

 $M \sim 10^{-5} M_{\odot}$ /yr by stellar outflows

 $L_{obs} \sim 10^{36} \text{ erg/s} \sim 10^{-5} \text{ x } (0.1 \text{ Mc}^2), \text{ radio to X-ray}$

Why low luminosity? low M or radiative efficiency

outflows/convection can decrease M

Bondi radius ~ 0.07 pc (2"), $n\sim 100/cc$, $T\sim 1.2$ keV [Baganoff et al. 2003]

mfp ≈ r_{Bondi}, collisionless at smaller r; detailed transport calculations useful

Disk Transport

molecular viscosity not sufficient, invoke turbulent viscosity

Hydrodynamic disks linearly stable, magnetic fields qualitatively different

Source of turbulence is MRI when $d\Omega^2/dlnr<0$; r- Φ correlations (due to shear) creates stress & causes transport

[Balbus & Hawley 1991]

Anisotropic viscous stress even if $B\rightarrow 0$; mass falls in & angular momentum flows out

3-D MHD simulations

Movies by John Hawley

MHD simulations of MRI turbulence quite successful. Need to study it in collisionless regime applicable to Sgr A*

Drift Kinetic Equation

plasma is collisionless, hot w. H~r

Larmor radius << disk height

drift kinetic equation: moment of the Vlasov eq.

Table 1.2: Plasma parameters for Sgr A*

Table 1.2. I fabilità parameters for 88 ff			
Parameter	$r = r_{acc}$	$r = \sqrt{r_{acc}R_S}$	$r = R_S$
	$2.2 \times 10^{17} \text{ cm}$	$4.2 \times 10^{14} \text{ cm}$	$7.8 \times 10^{11} \mathrm{~cm}$
$ u_{i, \mathrm{ADAF}}/\Omega_K \sim r^{3/2}$	11.4	9.4×10^{-4}	7.6×10^{-8}
$\nu_{i,\mathrm{CDAF}}/\Omega_K \sim r^{3/2+p}$	11.4	1.81×10^{-6}	2.62×10^{-13}
$\rho_{i,\mathrm{ADAF}}/H \sim r^{-1/4}$	2×10^{-11}	9.94×10^{-11}	4.59×10^{-10}
$\rho_{i,\mathrm{CDAF}}/H \sim r^{-1/4-p/2}$	2×10^{-11}	2.23×10^{-9}	2.48×10^{-7}

$$\frac{\partial f_{0s}}{\partial t} + (\mathbf{V}_E + v_{\parallel} \hat{\mathbf{b}}) \cdot \nabla f_{0s} + \left(-\hat{\mathbf{b}} \cdot \frac{D \mathbf{V}_E}{D t} - \mu \hat{\mathbf{b}} \cdot \nabla B + \frac{1}{m_s} (q_s E_{\parallel} + F_{g\parallel}) \right) \frac{\partial f_{0s}}{\partial v_{\parallel}} = 0$$

 $\mu = v_{\perp}^2/B \propto T_{\perp}/B$ is conserved; $V_E = c(EXB)/B^2$ mfp >> disk height scales >> Larmor radius

Moments of the DKE Kinetic-MHD

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0,$

similar to MHD

pressure anisotropic wrt B

how $p_{||}$, p_{\perp} evolve? next higher order moment $q_{||}$, q_{\perp} closure problem; q=0 (CGL approx. may not be good)

$$q \approx -n\nabla_{||}T/(k_{||}v_t+\upsilon)$$
[Snyder et al. 1997]

heat carried by free-streaming particles

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}),$$

$$\mathbf{P} = p_{\perp} \mathbf{I} + (p_{\parallel} - p_{\perp}) \,\hat{\mathbf{b}} \,\hat{\mathbf{b}},$$

$$\rho B \frac{D}{Dt} \left(\frac{p_{\perp}}{\rho B} \right) = -\nabla \cdot \mathbf{q}_{\perp} - q_{\perp} \nabla \cdot \hat{\mathbf{b}},$$

$$\frac{\rho^{3}}{B^{2}} \frac{D}{Dt} \left(\frac{p_{\parallel} B^{2}}{\rho^{3}} \right) = -\nabla \cdot \mathbf{q}_{\parallel} + 2q_{\perp} \nabla \cdot \hat{\mathbf{b}},$$

 $\rho \frac{\partial \mathbf{V}}{\partial t} + \rho \left(\mathbf{V} \cdot \nabla \right) \mathbf{V} = \frac{\left(\nabla \times \mathbf{B} \right) \times \mathbf{B}}{4\pi} - \nabla \cdot \mathbf{P} + \mathbf{F_g},$

captures collisionless effects like Landau damping

Anisotropic transport

Pressure anisotropy equivalent to anisotropic viscous stress, in addition to Reynolds & Maxwell_stresses

$$\frac{\partial}{\partial t}(\rho V) + \nabla \bullet \left(\rho VV + \left(p_{\perp} + \frac{B^{2}}{8\pi}\right)I - \frac{BB}{4\pi}\left(1 - \frac{p_{\parallel} - p_{\perp}}{B^{2}}\right)\right) = 0$$

Large scale anisotropic viscous heating, small-scale resistive, viscous heating

$$\frac{\partial}{\partial t}e + \nabla \cdot (eV + q) = -p_{\perp}\nabla \cdot V - (p_{\parallel} - p_{\perp})b : \nabla V + \eta_{R}j^{2} + \eta_{V} |\nabla V|^{2}$$

$$\delta p_{1s} = -\frac{p_{0s}}{\nu_s} (3\,\hat{\mathbf{b}} \cdot \nabla \mathbf{U} \cdot \hat{\mathbf{b}} - \nabla \cdot \mathbf{U})$$

$$\delta p = p_{\parallel} - p_{\perp}$$

In Braginskii regime, U>>kvt, pressure anisotropy $\delta p_{1s} = -\frac{p_{0s}}{\nu_s} (3\hat{\mathbf{b}} \cdot \nabla \mathbf{U} \cdot \hat{\mathbf{b}} - \nabla \cdot \mathbf{U})$ reduced by Coulomb collisions For $U \le kv_t$ anisotropy governed by μ invariance

Can anisotropy be arbitrarily large? No.

Δp limits

Electrons; [S. Bale]

Protons; [Kasper et al. 2003]

$$\left| \frac{p_{\perp}}{p_{\parallel}} - 1 \right| \le \frac{S}{\beta^{\alpha}}$$

Pressure anisotropy reduced by Larmor-scale instabilities:

protons: ion-cyclotron, mirror $(p_{\perp} > p_{||})$

electrons: electron-whistler $(p_{\perp}>p_{||})$

firehose for $(p_{\perp} < p_{\parallel})$

Collisionless MRI

fastest growing mode twice faster than in MHD, at much larger scales

collisionless damping, large scale dissipation $dv_{\parallel}/dt = -\mu \nabla_{\parallel} B + e E_{\parallel}/m$ [Quataert et al. 2002; Sharma et al. 2003; Balbus 2004]

Δp due to MRI

$$B.\nabla B \longrightarrow \left(1 - \frac{(p_{\parallel} - p_{\perp})}{B^2}\right) B.\nabla B$$

pressure anisotropy $(p_{\perp}>p_{||})$ as B \uparrow $\mu \propto < v_{\perp}^2 > /B \propto p_{\perp}/B = const.$

pressure anisotropy can stabilize MRI modes

How large can pressure anisotropy become? Anisotropy driven instabilities: mirror, ion cyclotron, etc.

$$\Delta p/p \approx O(1)/\beta$$
, $\beta=8\pi p/B^2 \sim 1-100$

Microinstabilities => MHD like dynamics

Pressure anisotropy

anisotropic stress ~ Maxwell stress (can dominate at $\beta >> 1$) anisotropic pressure => 'viscous' heating (due to anisotropic stress) at large scales

ion pressure anisotropy limited by IC instability threshold (with $\gamma/\Omega \sim 10^{-4}$) Will electrons also be anisotropic? Yes, collision freq. is really tiny electron pressure anisotropy reduced by electron whistler instability

Shearing-box energetics

Electron heating

Ratio of electron & proton heating rates

In sims. anisotropic heating numerical losses => half the energy is captured as heating due to anisotropic pressure

Form of pressure anisotropy threshold from full kinetic theory for both electrons & ions:

 $\frac{p_{\perp}}{p_{\parallel}} - 1 = \frac{S}{\beta^{\alpha}}$

 α ~0.5, S_e ~0.4 S_i for ion cyclotron/electron whistler instabilities =>significant electron heating (compare with Braginskii where ions are heated preferentially)

$$\left| \frac{q_e}{q_i} = \frac{\Delta p_e}{\Delta p_i} \sim \left(\frac{T_e}{T_i} \right)^{1/2}$$

Results depend on pitch angle scattering thresholds (which are fairly well-tested)

Radiative efficiency

Even if electrons are cold initially, viscous heating will eventually give T_e/T_i ~few tens (neglecting synchrotron cooling of electrons)

measured electron temperature $\sim 3 \times 10^{10}$ at $\sim 24 \text{ rs}$ [Bower et al. 2004]

Electrons somewhat radiatively efficient w. $\eta \sim 10^{-3}$ & $M \sim 10^{-7} M_{\text{p}}/\text{yr}$ consistent with Faraday RM observations

RM observations

[Bower et al. 2003]

Constrains accretion flow:

Faraday rotation measurements

polarization angle rotated in a non-relativistic plasma

 $\theta = \theta_0 + RM\lambda^2$, RM~nB_{||}r

 $RM=-6\times10^5$ rad/m² stable over 8 years!

too small compared to Bondi estimate

all available mass is not accreted; outflows reduce accretion rate

RM simulations

[Sharma et al. 2007]

begin with rotating, magnetized, torus

MRI turbulence => torus accretes to form a quasisteady Keplerian disk

equatorial viewing angles are variable, unlike polar

we may be looking through the poles! (if there is a large scale field), or

RM is dominated by larger radii

Conclusions

- pressure anisotropy natural as µ conserved
- scattering due to microinstabilities
- anisotropic stress ≈ Maxwell stress
- significant e^- heating => radiative (ADAF w. $\eta \sim 10^{-5}$ ruled out)
- M<<MBondi for low luminosity
- consistent with RM observations & RM sims
- steady RM if viewing through poles