CAMERA

S. R. Kulkarni,
Caltech Optical Observatories
on behalf of CAMERA team:
C. Barenec, M. Britton, R. Dekany N. Law

Goal:

- Routine access to the sky with consistent good to high Strehl ratio in the near-IR
- High efficiency
 - Fully automated AO setup
 - Robotic telescope
- Optional seeing-limited observations in the optical

Keck Laser Guide Star AO is now Routine

Progenitors of Ibc SNe: A Hot Result

Galactic Center

Imaging of lo

TO YOUR STRUCTURE OF THE CHNO TO STRUCTURE OF

AO OFF

AO ON

Palomar Transient Factory

Hyper-Eddington Red Nova

Next Generation Survey Telescopes

Will generate thousands of transients per night:

- •GRB's
- Novae, supernovae
- Eclipses, microlensing
- New phenomena

Adaptive Optics Applications for Small Aperture Telescopes

- Rapid response capability for transient followup
- High angular resolution surveys of thousands of targets
- Regular monitoring observations of variable targets

Supernovae Followup

Gravitational Lens Surveys

Seeing limited discovery image

Hubble followup image

Monitoring Photometric Light Curves

AO in a nutshell

The Cost Barrier

- Adaptive optics development financed largely through investment by the US military.
- Traditionally an extremely expensive technology, involving very specialized hardware and software.
- Sodium laser guide star requires very expensive lasers.
- Most of the AO effort has been directed towards the needs of large telescopes

The Opportunity

- Commercial adaptive optics components and science grade detectors now available at modest cost.
- Modern, small format deformable mirrors permit a compact optical design suitable for small aperture telescopes.
- Rayleigh scattering is adequate to produce moderate Strehl images for small telescopes
- Commercial solid state lasers can be used to generate a guide star suitable for small aperture telescopes.
- Commodity multiprocessor servers provide sufficient computational resources to perform real time control.

What is required?

- An AO system continuously mounted on a telescope
- High degree of system automation for rapid, autonomous response
- Good sky coverage
- Imaging capability in the visible and near-IR

CAMERA

Compact

Automated

MEMS

Rayleigh

Adaptive optics system

Design Philosophy

- Designed using commercially available components and detectors
- Employs a reliable solid state laser to generate a guide star
- Compact form factor
- Controlled using a multiprocessor server to facilitate automation

CAMERA Components

MEMS DM Tip tilt stage

L3 CCD

IR Array

Optical Design (Palomar 60-inch)

A Server and Clever Software

- Wavefront sensing and control through a multiprocessor server
- Observations executed autonomously
- Targets selected from a queue
- Monitors VOEvent feeds on the internet to provide transient followup capability

CAMERA Testbed at Caltech

SH WFS (11x11)

Iteration number 0

Iteration number 0

CAMERA Strehl vs. Wavelength on a 60" Telescope (Prediction)

CAMERA Sensitivity on a 60" Telescope

Band	5 min Limiting Magnitude	5 min CAMERA SNR	5 min SL SNR	t _{int} ratio	λ/D (mas)
V	22.5	10	10	1.0	72
R	23.2	10	5.3	3.5	81
I	24.1	10	1.9	27.7	122
J	23.5	10	1.0	100.0	169
Н	22.6	10	1.2	69.4	223

Costs

•	JDS Uniphase	Laser	\$	100K
•	Laser Launch T	elescope	\$	50K
•	Boston MicroM	achines MEMS	\$	30K
•	SciMeasure	WFS	\$	50K
•	Andor	L3 CCD	\$	50K
•	IR Lab	IR Camera	\$	100K
•	Optics, Bench,	TT etc	\$	60K
•	Computer etc		\$	15K
•	Software, I&T		\$:	300K
•	NRE		\$ 3	300K

Conclusions

- Adaptive optics has reached a price point that places this technology within reach of small aperture telescopes.
- Such a system mounted on a 2m class telescope can generate high profile astronomical results, particularly in the emerging field of transient astronomy.

