Relics from the Dawn of Time: Chemical
 Abundances of Extreme metal poor (EMP) stars

T. Sivarani

Michigan State University \& Joint Institute for Nuclear Astrophysics.
T.C. Beers, P. Bonifacio, B. Plez, R. Cayrel, M. Spite, F. Spite, P. Molaro and First Stars Collaboration (ESO-VLT large programme) SEGUE spectroscopic pipeline team.

Overview

First Stars - How massive?
First Supernovae - Chemical yields
EMP stars of the Galaxy - Abundances and the early IMF
The first low mass stars - Hyper metal poor (HMP) stars
([Fe/H]~-5.2) -high C and N low Li

Carbon enhanced metal poor stars (CEMP) - Binaries \rightarrow probing the unseen massive IMF \rightarrow CMB based IMF?

Future surveys - are we looking at the right place?

Epoch of the First Stars

Definitions:

First Stars (Pop III): Formed from the cloud with Primordial composition of BBN

Second generation stars: Polluted only by the First Supernovae (PopIII SN) - EMP stars?
$[\mathrm{Fe} / \mathrm{H}]=\log (\mathrm{N}(\mathrm{Fe}) / \mathrm{N}(\mathrm{H}))$ star $-\log (\mathrm{N}(\mathrm{Fe}) / \mathrm{N}(\mathrm{H}))$ sun
Metallicity - Abundance of stellar made nuclei
$[\mathrm{Fe} / \mathrm{H}]=0.0$ solar metallicity
$[\mathrm{Fe} / \mathrm{H}]=-1.5$ Halo or (PopII)
$[\mathrm{Fe} / \mathrm{H}]=-2.5$ metal poor Globular clusters
$[\mathrm{Fe} / \mathrm{H}]<-2.5$ extreme metal poor (EMP) stars $[\mathrm{Fe} / \mathrm{H}]<$
-5.0 hyper metal poor (HMP) stars

First Stars

Reionization
Metal Enrichment
High redshift SN \& GRBs?
CMB, NIR bkg. (Spitzer), Ly_alpha clouds EMP stars.

Cosmic Abundances

Primary Nucleosynthesis Sites and Timescales

\square Massive stars ($M>\mathbf{1 0} \mathbf{M}_{\odot}$) and SNe II: synthesis of most of the nuclear species from oxygen through zinc, and of the r-process heavy elements ($\tau<10^{8}$ years)
\square Red Giant Stars ($1<\mathbf{M}<\mathbf{1 0} \mathbf{M}_{\odot}$): synthesis of both ${ }^{12} \mathrm{C}$ and heavy s-process elements ($\tau>10^{9}$ years)
\square SNe Ia: synthesis of the $1 / 2-2 / 3$ of the iron peak nuclei not produced by SNe II ($\tau>1.5-2 \times 10^{9}$ years)

Time scales

EMP stars

Red Shift	Age of the Universe
∞	0 Gyr
10 (First Stars -	0.5
6 - SNe II)	1.0
5	1.2
4 (AGB Stars) \downarrow	1.6
3	2.3
$2 \quad$ (SNe Ia) \downarrow	3.5
1	6.2
0.5	9.1
~0.4 Birth of Sun	9.9
0	14.5

First Stars - How massive?

Observations: No true zero metallicity low mass stars observed today \Longrightarrow Very Massive First stars? low mass stars have fewer UV flux to re-ionize the universe

Theoretically: Inefficient cooling of the primodial gas \Longrightarrow massive stars

H2 can cool primordial gas to $T \sim 200 \mathrm{~K}$.
MJ ~ 100-1000 MD (Bromm, Coppi, \& Larson 1999; 2002, Abel, Bryan, \& Norman 2002)
"Warmer Primordial gas forms heavier stars"

Physics of Pair-instability Supernovae

$M \sim 140-260 M_{0}$
$-\mathrm{T}>10^{\circ} \mathrm{K}$

- ph+ph $\rightarrow \mathrm{e}^{-} \mathrm{e}^{+}$
- grav. runaway collapse
- large jump in core T
- explosive nuclear burning
- implosion \longrightarrow explosion
- no compact remnant
- all heavy elements dispersed
- distinct nucleosynthetic pattern

Production Factor of Pop III Pair Creation Supernovae

PISN yields

High yields of Fe-peak elements.
Odd-even effect in the abundance pattern
Low [N/O] .
No elements beyond Ni is produced $\stackrel{>}{ }$ low Zn
No r-process

Abundances of EMP stars

ESO-VLT program Cayrel et al.

EMP stars

N-capture in EMPs

Lighter

N-capture in EMPs

Heavy n-capture in EMPs

N-capture elements in EMP stars

Results

Small scatter $=>$ All First SNs produce same ratios and mixes same amount of primordial gas to produce same [Fe/H]

No significant odd even effect - No PISN

High [$\mathrm{Zn} / \mathrm{Fe}$], high [N/O], some amount of r-process present. - No PISN

Results

R-process abundance- scatter is very high compared to
Fe-peak \rightarrow only certain mass range of SN produce r-process
No significant r-process contribution below
[$\mathrm{Fe} / \mathrm{H}]<-3.0$
[Sr/Ba] increases at low metallicities.

SNs with ~ 10 Msun are responsible for the main
r-process production. R-rich stars ([r_process/Fe] > 1.0])
found only betn. $-3.0--2.0$
There is an alternative r-process path at low metallicities producing high [Sr/Ba]. High Sr in HMP star.

HERES Survey - Barklem et al. (2005) - 15 elements in 253
stars

[$\mathrm{Fe} / \mathrm{H}]$

HERES Survey -. Barklem et al. (2005)

First star - not PISN

$M_{m d}=100 M_{๑}$ for $Z=0$.

Pair-Instability supernovae

(Fe yield: 10M ${ }_{\circ}$)

First star: massive
not PISN

PISNe yields are characterized by big "Odd Even Effect" and no neutron capture nucleosynthesis.

Observed Fe-peak, eg. [Zn/Fe], require $\leq 1 / 2$ of Fe from PISNe.
PISNe have no r-process, so cannot give 82\% of EMPs with Ba.

Four Constraints on the Primordial IMF

Hyper metal poor stars

- HE0107-5240: [Fe/H] =-5.2 (Christlieb et al. 2002)

\cdot HE1327-2326: $[\mathrm{Fe} / \mathrm{H}]=-5.4$ (Frebel et al. 2005)

Figure from Aoki et al. (2006)
Atomic number

Observations
Frebel et al 04,06 (stars)
Plez \& Cohen 05 (triangle),
Aoki et al 05
Christlieb et al 04,
Norris et al 04,
Depagne et al 02

Theory

-Limongi et al 2003
-Umeda \& Nomoto 2003
-Suda et al 2004

mixing \& fallback \Rightarrow low [Co/Fe]

Low Li in HMP stars ?

HMP star - the First Low-mass Stars?

All stars below $[\mathrm{Fe} / \mathrm{H}]=-4.0$ are carbon rich

Carbon enhanced metal poor stars IMF of the $2^{\text {nd }}$ generation stars

Binary - Probe into missing more massive EMP

 starsHow to estimate the
IMF from observation of CEMP star.

Evolution of a primary star affects abundances of a secondary star.

Observed feature of a CEMP star \bigcirc
Mass of a primary star.

Estimate of the IMF

CEMP among EMPs

- ~1000 EMP stars are observed in the Galactic halo.
- Only low mass stars still alive.
- 20~25\% of EMP stars show carbon enhancement (CEMP).

Many intermediate mass stars (especially 4~6M ${ }_{\odot}$)

IMF with peak at larger mass

Where are the intermediate AGB binaries?

The CMB and the Characteristic Stellar Mass

Studies of local star formation (Larson '98,'05; Jappsen et al. '05) suggest that the characteristic mass of stars responds to the minimum T at which gas becomes optically thick to cooling radiation and thermally coupled to dust.

At low redshift, $\mathrm{Z}=\mathrm{Zmin}=10 \mathrm{~K}$ is set by metal and dust cooling.

But at high z, the CMB itself is the minimum gas temperature!

$$
z=5,10,20 \quad T_{-} C M B=16,30,57 \mathrm{~K} \quad M_{-} c=2,6,17 \mathrm{MD}
$$

Thus stars formed early in MW history, at $\mathrm{z}>5$, should be affected!

Two Predictions of the CMB-IMF Hypothesis

$f_{\text {CEmp }}$ should increase with declining $[\mathrm{Fe} / \mathrm{H}]$.

Inside-out construction the halo causes extended epoch of star formation at fixed [Fe/H], so

$f_{\text {CEMP }}$ should increase in "older" regions of the Galaxy and decrease in "younger" regions, at fixed metallicity.

In a sample of 174 bright HES stars, Frebel et al. (2006) find variation in f_{CEMP} with $[\mathrm{Fe} / \mathrm{H}]$ and with scale height above the Galactic plane.

More observations

Phoenix - Gemini South
CRIES - VLT
Oxygen in CEMPs SOAR- MSU NIR
SDSS - EMP stars follow-up SUBARU-HDS, HET-HiRes, VLT-UVES

Medium resolution
Spectroscopy
Fluorine in cool EMPs

Frequency of CEMPs at various parts of the Galaxy

Oxygen abundances in CEMPs - Pilot survey with SOAR-MSU

Conclusions

First SNs are not PISN \rightarrow EMP abundances favor 10-100Msun SNs

Main r-process is due to 10 Msun SN .
There is an alternate r-process site for lighter $r-$ process.

CEMP binaries $\rightarrow \mathrm{Mc}=6-10$ for $2^{\text {nd }}$ generation stars CMB influence on IMF ? More observations

The CMB and the Characteristic Stellar Mass

Studies of local star formation (Larson '98,'05; Jappsen et al. '05) suggest that the characteristic mass of stars responds to the minimum T at which gas becomes optically thick to cooling radiation and thermally coupled to dust.

At low redshift, $Z=Z_{\text {min }}=10 \mathrm{~K}$ is set by metal and dust cooling.
But at high z, the CMB itself is the minimum gas temperature!

$$
\begin{array}{r}
\mathrm{m}_{\mathrm{C}} \approx 0.9 \mathrm{M}_{\mathrm{D}}\left[\mathrm{~T}_{\mathrm{CMB}} / 10 \mathrm{~K}\right]^{1.70-3.35} \\
\mathrm{z}=5,10,2 \overrightarrow{03} \cdot 4 T_{\mathrm{CMB}}=16,30,57 \mathrm{~K} \frac{T}{\mathrm{~K}_{\mathrm{C}}}=2,6,17 \mathrm{M}_{\mathrm{D}}
\end{array}
$$

Thus stars formed early in MW history, at $z>5$, should be affected!

SN and Hypernova Nucleosynthesis

$E \sim 10^{51} \mathrm{erg} \quad \rightarrow \quad \mathrm{E} / 10^{52} \mathrm{erg}$

Low energy
High energy

AGB Nucleosynthesis depends on

 MassYields frc Karakas (2003)

