Relics from the Dawn of Time: Chemical Abundances of Extreme metal poor (EMP) stars

T. Sivarani

Michigan State University & Joint Institute for Nuclear Astrophysics.

T.C. Beers, P. Bonifacio, B. Plez, R. Cayrel, M. Spite, F. Spite, P. Molaro and First Stars Collaboration (ESO-VLT large programme) SEGUE spectroscopic pipeline team.

First Stars – *How massive?*

First Supernovae – *Chemical yields*

EMP stars of the Galaxy – *Abundances and the early IMF*

The first low mass stars - *Hyper metal poor (HMP) stars* $([Fe/H] \sim -5.2)$ -high C and N low Li

Carbon enhanced metal poor stars (CEMP) – Binaries \rightarrow probing the unseen massive IMF \rightarrow *CMB based IMF*?

Future surveys – are we looking at the right place?

Epoch of the First Stars

Definitions:

First Stars (Pop III): Formed from the cloud with Primordial composition of BBN

Second generation stars: Polluted only by the First Supernovae (PopIII SN) – EMP stars?

[Fe/H] = log(N(Fe)/N(H))star –log(N(Fe)/N(H))sun Metallicity – Abundance of stellar made nuclei [Fe/H] = 0.0 solar metallicity [Fe/H] = -1.5 Halo or (PopII) [Fe/H] = -2.5 Halo or (PopII) [Fe/H] = -2.5 metal poor Globular clusters [Fe/H] < -2.5 extreme metal poor (EMP) stars [Fe/H] < -5.0 hyper metal poor (HMP) stars</p>

First Stars

Reionization Metal Enrichment High redshift SN & GRBs?

CMB, NIR bkg. (Spitzer), Ly_alpha clouds EMP stars.

Cosmic Abundances

Primary Nucleosynthesis Sites and Timescales

- Massive stars (M > 10 M_☉) and SNe II: synthesis of most of the nuclear species from oxygen through zinc, and of the r-process heavy elements (τ < 10⁸ years)
- □ Red Giant Stars (1 < M < 10 M_☉): synthesis of both ¹²C and heavy s-process elements (τ > 10⁹ years)
- SNe Ia: synthesis of the 1/2-2/3 of the iron peak nuclei not produced by SNe II (τ > 1.5-2 x10⁹ years)

Time scales

	Red Shift	Age of the Universe
	8	0 Gyr
	10 (First Stars -	0.5
_	6 – SNe II)	1.0
	5	1.2
	4 (AGB Stars)↓	1.6
	3	2.3
	2 (SNe Ia)↓	3.5
	1	6.2
	0.5	9.1
	~0.4 Birth of Sun	9.9
	0	14.5

EMP stars

First Stars – How massive?

Observations: No true zero metallicity low mass stars observed today ==> Very Massive First stars? low mass stars have fewer UV flux to re-ionize the universe

Theoretically: Inefficient cooling of the primodial gas ==> massive stars

H2 can cool primordial gas to $T \sim 200$ K. MJ ~ 100 - 1000 M \heartsuit (Bromm, Coppi, & Larson 1999; 2002, Abel, Bryan, & Norman 2002)

"Warmer Primordial gas forms heavier stars"

Physics of Pair-instability Supernovae

PISN yields

High yields of Fe-peak elements.
Odd-even effect in the abundance pattern
Low [N/O].
No elements beyond Ni is produced → low Zn
No r-process

Abundances of EMP stars

ESO-VLT program Cayrel et al.

"Standard model" 10 - 100 solar masses

N-capture in EMPs

Lighter N-capture in EMPs

Heavy n-capture in EMPs

N-capture elements in EMP stars

Results

Small scatter => All First SNs produce same ratios and mixes same amount of primordial gas to produce same [Fe/H]

No significant odd even effect – No PISN

High [Zn/Fe], high [N/O], some amount of r-process present. – No PISN

Results

R-process abundance- scatter is very high compared to Fe-peak → only certain mass range of SN produce r-process

No significant r-process contribution below [Fe/H] < -3.0

[Sr/Ba] increases at low metallicities.

SNs with ~ 10Msun are responsible for the main r-process production. R-rich stars ([r_process/Fe] > 1.0]) found only betn. -3.0 - -2.0

There is an alternative r-process path at low metallicities producing high [Sr/Ba]. High Sr in HMP star.

HERES Survey - Barklem et al. (2005) – 15 elements in 253 stars

First star – not PISN

 $M_{md} = 100 M_{\odot}$ for Z=0.

<u>Pair-Instability supernovae</u> (Fe yield: $10M_{\odot}$)

PISNe yields are characterized by big "Odd Even Effect" and **no** neutron capture nucleosynthesis.

Observed Fe-peak, eg. [Zn/Fe], require $\leq \frac{1}{2}$ of Fe from PISNe.

PISNe have no r-process, so cannot give 82% of EMPs with Ba.

Four Constraints on the Primordial IMF

Hyper metal poor stars

- **HE0107-5240**: [Fe/H] = 5.2 (Christlieb et al. 2002)
- **HE1327-2326**: [Fe/H] = 5.4 (Frebel et al. 2005)

7 M_{sol} , Z=0.00001, V_{ini}=800 km s⁻¹

Meynet, Ekström, Maeder (2006)

Observations

Theory

Frebel et al 04,06 (stars) Plez & Cohen 05 (triangle), Aoki et al 05 Christlieb et al 04, Norris et al 04, Depagne et al 02

Meynet et al. 2006; Hirschi 2006

HMP stars: 1D Low E models (E_{st}< 1) mixing & fallback → low [Co/Fe]

Low Li in HMP stars ?

HMP star - the First Low-mass Stars?

All stars below [Fe/H] = -4.0 are carbon rich

Carbon enhanced metal poor stars IMF of the 2nd generation stars

Binary – Probe into missing more massive EMP stars

How to estimate the IMF from observation of CEMP star. Evolution of a primary star affects abundances of a secondary star.

Observed feature of a CEMP star

Mass of a primary star.

CEMP among **EMPs**

- ~1000 EMP stars are observed in the Galactic halo.
- <u>Only low mass stars still</u> <u>alive.</u>
- 20~25% of EMP stars show <u>carbon</u> <u>enhancement (CEMP).</u>

IMF with peak at larger mass

Where are the intermediate AGB binaries?

Sivarani et al. 2006

The CMB and the Characteristic Stellar Mass

Studies of local star formation (Larson '98,'05; Jappsen et al. '05) suggest that the characteristic mass of stars responds to the minimum *T* at which gas becomes optically thick to cooling radiation and thermally coupled to dust.

At low redshift, Z = Zmin = 10 K is set by metal and dust cooling.

But at high z, the CMB itself is the minimum gas temperature!

z = 5, 10, 20 $T_CMB = 16, 30, 57$ K $M_c = 2, 6, 17$ M \heartsuit Thus stars formed early in MW history, at z > 5, should be affected! Two Predictions of the CMB-IMF Hypothesis

 f_{CEMP} should increase with declining [Fe/H].

Inside-out construction the halo causes extended epoch of star formation at fixed [Fe/H], so f_{CEMP} should increase in "older" regions of the Galaxy and decrease in "younger" regions, at fixed metallicity. In a sample of 174 bright HES stars, Frebel et al. (2006) find variation in f_{CEMP} with [Fe/H] and with scale height above the Galactic plane.

More observations

Phoenix – Gemini South Fluorine in cool EMPs CRIES – VLT

Oxygen in CEMPs SOAR- MSU NIR

SDSS – EMP stars

follow-up SUBARU-HDS, HET-HiRes , VLT-UVES

Medium resolution Spectroscopy Frequency of CEMPs at various parts of the Galaxy

Oxygen abundances in CEMPs – Pilot survey with SOAR-MSU

Conclusions

First SNs are not PISN \rightarrow EMP abundances favor 10-100Msun SNs

Main r-process is due to 10Msun SN.

There is an alternate r-process site for lighter r-process.

CEMP binaries \rightarrow Mc = 6-10 for 2nd generation stars CMB influence on IMF ? More observations

The CMB and the Characteristic Stellar Mass

Studies of local star formation (Larson '98,'05; Jappsen et al. '05) suggest that the characteristic mass of stars responds to the minimum T at which gas becomes optically thick to cooling radiation and thermally coupled to dust.

At low redshift, $Z = Z_{min} = 10$ K is set by metal and dust cooling.

But at high z, the CMB itself is the minimum gas temperature! $m_c \approx 0.9 M_p [T_{CMB}/10K]^{1.70-3.35}$ $z = 5, 10, 205, 4T_{CMB} = 16, 30, 57 K_{SUR} K_{M_c} = 2, 6, 17 M_p$

Thus stars formed early in MW history, at z > 5, should be affected!

SN and Hypernova Nucleosynthesis

Low energy

High energy

AGB Nucleosynthesis depends on

