
The probability that the inclination angle is less than 8
◦

is 1% (bordering on being quite

“lucky”) whereas the probability that i > 30
◦

is 87% (the likely case). Thus we consider

two cases: m = m1 = 2MJ (case 1) and m = m2 = 7MJ (case 2).

A companion orbiting a star (orbital period, P ) suffers tidal squeezing owing to its finite

size. For small objects the material (tensile) strength of the material matters. However,

for a self-gravitating object the material properties do not play a role. As can be seen from

a brief summary given in the Appendix there is a minimum density that a self-gravitating

body must have so that it can preserve its integrity. This minimum density is about 10

times that of the density obtained by spreading the star over the entire orbit.

The mean density for an orbital period of 2 hours is ρa = 2.72 g cm
−3

(see Equation 5).

Thus the minimum density of the planet is 27.5 g cm
−3

(see Equation 4). These densities

should be compared to that of Jupiter, ρJ ≈ 1.32 g cm
−3

– whence the first class puzzle

posed by Professor Bailes’ discovery.

As noted above we do not know the mass of the planet. Armed with the minimum

density we can compute the radius of the planet for a range of assumed masses. For

m = m1 we find r1 = 3.2 × 10
9
cm and for m = m2 we find r2 = 4.8 × 10

9
cm. [For

reference, the radius of Jupiter, RJ = 7× 10
9
cm].

3 Comparison to Observations

Figure 1: Mass and Radius of Extra-solar planets and brown dwarfs (from Latham et al. 2010,

ApJ, 713, L140).

Figure 1 provides a summary of the density of extra-solar planets. The planets shown

in Figure 1 are normal planets with normal cosmic composition. This figure shows that
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