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secure measurements would potentially perturb the ho-
mogeneity of the sample and the coherence of the infer-
ence.
For an all inclusive assessment of NS masses, more

sophisticated hierarchical inference methods may be re-
quired. For sparse data, a proper statistical treatment of
different systematic effects and a priori assumptions is
not trivial. Also, the expected loss in precision may out-
weigh the gain obtained from a more detailed approach.
Without properly tested and calibrated tools, further in-
clusion of NSs whose masses are not measured by pulsar
timing may just contaminate the sample and can there-
fore be misleading (e.g., see Steiner et al. 2010).

5.1. Statistical Model

Here, we present the statistical model used for estimat-
ing the NS mass distribution. The approach is based on a
formulation that incorporates measurement errors of NS
mass estimates. Specifically, we perform our calculations
for mass distributions characterized by

mi = Mi + wi, i = 1, ..., n (12)

where m is the pulsar mass estimate and M is the NS
mass with an associated w error. We assume a normal
NS mass distribution, N(M;µ,σ2), with mean µ and
variance σ2. The errors (wi), associated with the pul-
sar mass estimates (mi) are assumed to arise from nor-
mal distributions N(0, S2

i ). The observation specific er-
ror variances (S2

i ) are obtained from the error bands of
pulsar observations (i.e., Table 1 and Table 2). Assum-
ing independence between the normal distributions for
M and w, the probability model described above yields
a

N(m;µ,σ2 + S2) (13)

distribution for the NS mass estimates.
Therefore, the likelihood function for the NS mass dis-

tribution parameters (µ,σ2) is given by

L(µ,σ2; data) =
n
∏

i=1

[

2π(σ2 + S2
i )
]−1/2

e
−

(mi−µ)2

2(σ2+S2
i
) (14)

(for derivation see §A). Here, the data vector comprises
the observed mass estimates mi, and error variances S2

i ,
which are computed using the estimated error bars for
each mi, i = 1, ..., n. Numerical maximization of the
likelihood function yields maximum likelihood estimates
for the Gaussian mean µ and half-width σ implied by
pulsar observations.
However, the general non-standard fashion of how σ2

enters the expression for the likelihood function, the un-
certainty quantification for the point estimates of µ and
σ, and the subsequent effect on NS mass density esti-
mates would require asymptotic results for likelihood-
based confidence intervals. Given that the likelihood ap-
proach relies on large sample sizes for uncertainty esti-
mates, this can be especially problematic where the num-
ber of mass estimates from DNS and NS-WD systems are
small.
We thus employ a Bayesian approach to modeling

and inference of the NS mass distribution. Under
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Figure 2. Posterior predictive density estimates for the neutron
star mass distribution. DNS and NS-WD systems have respective
peaks at 1.35 M! and 1.50 M!. Probability densities are normal-
ized to show the 95% posterior probability range. The solid parts
of the curves show the central 68% probability range which cor-
respond to 1.35 ± 0.13 M! and 1.50 ± 0.25 M! for the DNS and
NS-WD system, respectively.

the Bayesian model formulation, the likelihood function
L(µ,σ2; data) is combined with (independent) prior dis-
tributions π(µ) and π(σ2) for µ and σ2 to obtain the
posterior distribution for the model parameters, given
the data,

p(µ,σ2 | data) = C−1π(µ)π(σ2)L(µ,σ2; data). (15)

We work with a normal prior for µ with mean a and vari-
ance b2, and an inverse-gamma prior for σ2 with mean
d/(c − 1) for c > 1 (see §A for details). The normal-
izing constant of the posterior distribution involves the
marginal likelihood for the data, that is,

C =

∫

π(µ)π(σ2)L(µ,σ2; data) dµdσ2. (16)

The posterior density is not available in closed form,
since the integral for the normalizing constant cannot
be analytically evaluated. We therefore resort to a
Markov chain Monte Carlo (MCMC) approach to sam-
pling from the posterior distribution (see Gelman et al.
2003). MCMC posterior inference is based on simula-
tion from a Markov chain whose stationary distribution is
given by the posterior distribution for the model param-
eters. As detailed in §A, the MCMC algorithm samples
dynamically from the posterior full conditional distribu-
tions for µ and σ2. The former is a normal distribution
and hence readily sampled; the latter is not of a stan-
dard form and thus a Metropolis-Hastings (M-H) step is
used to sample from the conditional posterior distribu-
tion of σ2. The resulting posterior samples for (µ,σ2)
can be used for full and exact inference for the model
parameters µ and σ2. More importantly, the posteriors
for (µ,σ2) are used to infer the NS mass distribution.
In a Bayesian approach, the posterior predictive den-

sity, denoted by P(M0 | data), provides the estimate
for the density of the NS mass distribution. Formally,
P(M0 | data) is the distribution for a “new” unobserved
pulsar with unknown mass M0, which we seek to esti-
mate (predict) given the observed data. Following the


