Exponential {stats}R Documentation

The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distribution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.
rate vector of rates.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate λ has density

f(x) = lambda e^(- lambda x)

for x >= 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function, and rexp generates random deviates.

Note

The cumulative hazard H(t) = - log(1 - F(t)) is -pexp(t, r, lower = FALSE, log = TRUE).

Source

dexp, pexp and qexp are all calculated from numerically stable versions of the definitions.

rexp uses

Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential and normal distributions. Communications of the ACM, 15, 873–882.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 19. Wiley, New York.

See Also

exp for the exponential function, dgamma for the gamma distribution and dweibull for the Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

[Package stats version 2.5.0 Index]