
Do Random phenomena exist in Nature?

Which way a coin tossed in air will fall may be completely determined by laws
of physics. The only problem in figuring out the trajectory and hence the face of
the coin when it is on ground is that we have to measure too many parameters, e.g.
angular momentum of rotation, force at the time of toss, wind pressure at various
instants during the rotation of the coin, etc.!

Which way an electron will spin is also not known and so modelling it will
require incorporating a random structure. But we cannot exclude the possibility
that sometime in future, someone will come up with a theory that will explain the
spin.

Thus we often come across events whose outcome is uncertain. The uncertainty
could be because of our inability to observe accurately all the inputs required to
compute the outcome.
It may be too expensive or even counterproductive to observe all the inputs. The
uncertainty could be due to the current level of understanding of the phenomenon.
The uncertainty could be on account of the outcome depending on choices made by
a group of people at a future time - such as outcome of an election yet to be held.

Cosmic distance ladder The objects in the solar system were measured

quite accurately by ancient Greeks and Babylonians using geometric and trigono-
metric methods.

see also www.math.ucla.edu/~ tao/preprints/Slides/Cosmic%20Distance%20Ladder.ppt

The distance to the stars in the second lot are found by ideas of parallax, cal-
culating the angular deviation over 6 months. First done by the mathematician
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Friedrich Bessel. The error here is of the order of 100 light years.

The distances of the moderately far stars are obtained by a combination of their
apparent brightness and the distance to the nearby stars. This method works for
stars upto 300,000 light years and the error is significantly more.

The distance to the next and final lot of stars is obtained by plotting the oscil-
lations of their brightness. This method works for stars upto 13,000,000 light years!

At every step of the distance ladder, errors and uncertainties creep in. Each step
inherits all the problems of the ones below, and also the errors intrinsic to each step
tend to get larger for the more distant objects; thus the spectacular precision at the
base of the ladder degenerates into much greater uncertainty at the very top.

So we need to understand UNCERTAINTY.

And the only way of understanding a notion scientifically is to provide a structure
to the notion.

A structure rich enough to lend itself to quantification.

The structure needed to understand a coin toss is intuitive.
We assign a probability 1/2 to the outcome HEAD and a probability 1/2 to the

outcome TAIL of appearing.

Similarly for each of the outcomes 1,2,3,4,5,6 of the throw of a dice we assign a
probability 1/6 of appearing.
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Similarly for each of the outcomes 000001, . . . , 999999 of a lottery ticket we assign
a probability 1/999999 of being the winning ticket.

Of course, we could obtain the structure of the uncertainty in a coin toss from
the example of throwing a dice.

In particular if we declare as HEAD when the outcome of a throw of a dice is an
even number, and if we declare as TAIL when the outcome of a throw of a dice is
an odd number, then we have the same structure as that we had from a coin toss.

More generally, associated with any experiment we have an outcome space Ω
consisting of outcomes {o1, o2, . . . , om}.

Coin Toss – Ω = {H, T}

Dice – Ω = {1, 2, 3, 4, 5, 6}

Lottery – Ω = {1, . . ., 999999}

Each outcome is assigned a probability

Coin Toss – pH = 1/2, pT = 1/2

Dice – pi = 1/6 for i = 1, . . . , 6

Lottery – pi = 1/999999 for i = 1, . . . , 999999

More generally, for an experiment with an outcome space Ω = {o1, o2, . . . , om}.
we assign a probability pi to the outcome oi for every i in such a way that the
probabilities add up to 1.

The set Ω = {o1, o2, . . . , om} is called a sample space.

A subset E ⊆ Ω is called an event.

We may be gambling with dice, so we could have a situation like

outcome 1 2 3 4 5 6
money amount −8 2 0 4 −2 4
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Our interest in the outcome is only vis-á-vis it’s association with the monetary
amount.

So we are interested in a mapping (i.e. a function) of the outcome space Ω to
the reals R

Such functions are called random variables.
The probabilistic properties of these random variables can be read out from the

probabilities assigned to the outcomes of the underlying outcome space.

The probability that you win 4 rupees, i.e. P{X = 4} means you want to
find that the number 4 or the number 6 came out on the dice, i.e. P{4, 6} Thus
P{ω : X(ω) = 4} = P{4, 6} = (1/6) + (1/6) = 1/3.

Similarly the probability that you do not lose any money is the probability of
the event that either 2, 3, 4 or 6 came out on the dice, and this probability is (1/6)
+ (1/6)+(1/6) + (1/6) = 2/3.

What are we doing?
Recall our assignment of probabilities P (oi) = pi on the outcome space Ω =

{o1, o2, . . . , om}.

For an event E = {oi1 , oi2 , . . . , oik}, we define

P (E) = pi1 + pi2 + · · · + pik .

Easy to check that if A,B are mutually disjoint, i.e. A ∩B = φ then

P (A ∪B) = P (A) + P (B)

U

BA

A    B
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More generally, we can check that for any two events A, B

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Similarly, for three events A, B, C

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
−P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+P (A ∩B ∩ C)

This has a generalization to n events.

How do we assign the probabilities pi to the elementary outcomes?

The simplest case is when due to inherent symmetries present, we can model all
the elementary events (i.e.outcomes) as being equally likely.

vspace2mm

When an experiment results in m equally likely outcomes o1, o2, . . . , om, the
probability of an event A is

P (A) =
#A

m

i.e. the ratio of the number of favourable outcomes to the total number of outcomes.

Example: Toss a coin three times

No. of Heads in 3 tosses
Ω = {0, 1, 2, 3}

Ω = {HHH, ←− 3 Heads
HHT, HTH, THH, ←− 2 Heads
HTT, THT, TTH, ←− 1 Head
TTT} ←− 0 Heads
p(∗ ∗ ∗) = 1/8 p(0) = 1/8, p(1) = 3/8,

p(2) = 3/8, p(3) = 1/8
Note we could have done the calculations in the red part without even associating
it with the blue sample space etc.

Conditional probability Let X be the number which appears on the throw of a
dice.
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Each of the six outcomes is equally likely, but suppose I take a peek and tell you
that X is an even number.

Question: What is the probability that the outcome belongs to {1, 2, 3}?

Given the information I conveyed, the six outcomes are no longer equally likely.

Instead, the outcome is one of {2, 4, 6} – each being equally likely.

So with the information you have, the probability that the outcome belongs to
{1, 2, 3} equals 1/3.

Consider an experiment with m equally likely outcomes and let A and B be two
events.

Given the information that B has happened,
what is the probability that A occurs?

This probability is called the conditional probability of A given B

and written as P (A | B).
U

#A= k #B=

#A    B= j

l

Let #A = k, #B = l, #(A ∩B) = j.
Given that B has happened, the new probability assignment gives a probability

1/l to each of the outcomes in B.

Out of these l outcomes of B,
#(A ∩B) = j outcomes also belong to A.

Hence P (A | B) = j/l.
Noting that P (A ∩B) = j/m and P (B) = l/m, it follows that

P (A | B) =
P (A ∩B)

P (B)
.
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In general when A,B are events such that P (B) > 0, the conditional probability
of A given that B has occurred P (A | B) is defined by

P (A | B) =
P (A ∩B)

P (B)

This leads to the Multiplicative law of probability

P (A ∩B) = P (A | B)P (B)

This has a generalization to n events:

P (A1 ∩A2 ∩ . . . ∩An)
= P (An | A1, . . . , An−1)

×P (An−1 | A1, . . . , An−2)
× . . .×
×P (A2 | A1)P (A1)

The Law of Total Probability
Let B1, . . . , Bk be a partition of the sample space Ω

Ω

B
B

B

B

B
B

B1 2
3

4

5

6

7

A

The Law of Total Probability
Let B1, . . . , Bk be a partition of the sample space Ω and A an event
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Ω

B
B

B

B

B
B

B1 2
3

4

5

6

7

A

Then P (A) = P (A ∩B1) + · · · + P (A ∩Bk)

Also we know P (A ∩Bi) = P (A|Bi)P (Bi)

so we get the Law of Total Probability

P (A) = P (A|B1)P (B1) + · · · + P (A|Bk)P (Bk)

Example
Suppose a bag has 6 one rupee coins, exactly one of which is a Sholay coin, i.e.
both sides are HEAD. A coin is picked at random and tossed 4 times, and each toss
yielded a HEAD.

Two questions which may be asked here are

(i) what is the probability of the occurrence of A = {all four tosses yielded HEADS}?

(ii) given that A occurred, what is the probability that the coin picked was the
Sholay coin?

The first question is easily answered by the laws of total probability. Let
B1 = coin picked was a regular coin
B2 = coin picked was a Sholay coin
Then

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2)

=
(

1
2

)4 5
6

+
1
6

=
21
96

=
7
32
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For the second question we need to find

P (B2 | A) =
P (B2 ∩A)

P (A)

=
P (A | B2)P (B2)

P (A)

=
1/6
7/32

=
16
21

The previous example is atypical of the situation where we perform scientific
experiments and make observations. On the basis of the observations we have to
infer what was the theoretical process involved in the experiment to obtain the given
observation. Occassionally we may have some (though not complete) information
of the process, in which case we can use this information to help in our inference.

In particular, in the example we had the prior information that there was exactly
one Sholay coin among the six coins.

Suppose we have observed that A occurred.
Let B1, . . . , Bm be all possible scenarios under which A may occur, i.e. B1, . . . , Bm

is a partition of the sample space. To quantify our suspicion that Bi was the cause
for the occurrence of A, we would like to obtain P (Bi | A).

Bayes’ formula or Bayes’ theorem is the prescription to obtain this quantity. The
theorem is very easy to establish and is the basis of Bayesian Inference.

Bayes’ Theorem:

If B1, B2, . . . , Bm is a partition of the sample space, then

P (Bi | A) =
P (A | Bi)P (Bi)

P (A)

=
P (A | Bi)P (Bi)∑m

j=1 P (A | Bj)P (Bj)

Suppose that A,B are events such that

P (A | B) = P (A)P (B).
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Then we get
P (A | B) = P (A).

i.e. the knowledge that B has occurred has not altered the probability of A.
In this case, A and B are said to be independent events.

Let X, Y , Z be random variables each taking finitely many values. Then X, Y ,
Z are said to be independent if

P (X = i, Y = j, Z = k) = P (X = i)P (Y = j)P (Z = k)

for all possible values i, j, k of X, Y, Z respectively.
This can be generalized to finitely many random variables.

Expectation of a random variable

Let X be a random variable taking values x1, x2 . . . , xn. The expected value µ
of X (also called the mean of X) denoted by E(X) is defined by

µ = E(X) =
n∑

i=1

xiP (X = xi).

The variance of a random variable is defined by

σ2 = Var(X) = E{(X − µ)2}.

Example
Let X be a random variable

taking values taking values
+1 or −1 +10 or −10
with prob. 1/2 each with prob. 1/2 each
µ = E(X) = 0 µ = E(X) = 0
and and
σ2 = Var(X) = 1 σ2 = Var(X) = 100

The variance of a random variable describes the spread of the values taken by
the random variable.

Notation
We will denote by CAPITAL letters the random variables, and by small letters the
values taken by the random variables.
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Thus X, Y , Z will stand for random variables, while x, y, z will stand for the
values attained by the random variables X, Y , Z respectively.

Examples of random variables
Consider n independent trials where the probability of success in each trial is p and
let X denote the total number of successes, then

P (X = k) =
(

n
k

)
pk(1− p)n−k

for k = 0, 1, . . . n, 0 ≤ p ≤ 1. This is known as Binomial distribution, written as
X ∼ B(n, p).

E(X) = np and V ar(X) = np(1− p).

Consider a random variable X such that

P (X = k) = λk

k! e
−λ

for k = 0, 1, 2, . . .. and λ > 0. This is known as Poisson distribution. Here
E(X) = λ and V ar(X) = λ.

If X has Binomial distribution B(n, p) with large n and small p, then X can be
approximated by a Poisson random variable Y with parameter λ = np, i.e.

P (X ≤ a) ≈ P (Y ≤ a)

In order to consider random variables that may take any real number or any
number in an interval as its value, we need to extend our notion of sample space
and events. One difficulty is that we can no longer define probabilites for all subsets
of the sample space. We will only note here that the class of events - namely the
sets for which the probabilities are defined is large enough.

We also need to add an axiom called Countable additivity axiom: If A1, A2, . . . , Ak, . . .
are pairwise mutually exclusive events then

P
(
∪∞i=1Ai

)
=

∞∑

i=1

P (Ai).

A real valued function X on a sample space Ω is said to be a random variable if
for all real numbers a, the set {ω : X(ω) ≤ a} is an event.
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For a random variable X, the function F defined by

F (x) = P (X ≤ x)

is called its distribution function. If there exists a function f such that

F (x) =
∫ x

−∞
f(t)dt

then f is called the density of X.

Examples of densities:

f(x) =
{

λ exp(−λx) if x ≥ 0
0 if x < 0

This is called exponential density.

f(x) =
1√
2πσ

exp
{
−(x− µ)2

2σ2

}

This is the Normal density.

Normal density function

Normal density function
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A very common density funtion encountered in astronomy is the globular cluster
luminosity function GCLF.

A globular cluster (GC) is a collection of 104-106 ancient stars concentrated into
a tight spherical structure structurally distinct from the field population of stars.

The distribution of GC luminosities (i.e. the collective brightness of all of its
stars) is known as the globular cluster luminosity function (GCLF).

The shape of this function is said to be lognormal i.e.

f(x) =
1

xσ
√

2π
exp

{
−(ln(x)− µ)2

2σ2

}
for x > 0.

Lognormal density function
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The distribution function of this random variable is difficult to compute explic-
itly.

It may be shown that if X is a normal random variable, then eX has a log-normal
distribution.

Lognormal density function

For a random variable X with density f , the expected value of X, where g is a
function is defined by

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx.

For a random variable X with Normal density

f(x) =
1√
2πσ

exp
{
−(x− µ)2

2σ2

}

E(X) = µ

V ar(X) = E[(X − µ)2] = σ2.

We write X ∼ N(µ,σ2).

Rahul Roy15



If X ∼ N(0, 1) (i.e. the mean is 0 and variance is 1) then we call X a standard
normal random variable and denote its density function and distribution function
as

φ(z) =
1√
2π

e(−z2/2)

Φ(x) =
∫ x

−∞

1√
2π

e(−z2/2)dz

The values of Φ(x) and those of F (x) for other standard distributions are available
in various computer spreadsheets.

For a random variable Y with lognormal density

f(x) =
1

xσ
√

2π
exp

{
−(ln(x)− µ)2

2σ2

}
for x > 0.

E(X) = eµ+(σ2/2)

V ar(X) = E[(X − µ)2] = (eσ2 − 1)e2µ+σ2
.

When an experiment is conducted many times, e.g. a coin is tossed a hundred
times, we are generating a sequence of random variables. Such a sequence is called
a sequence of i.i.d. (independent identically distributed) random variables.

Suppose we gamble on the toss of a coin as follows – if HEAD appears then you
give me 1 Rupee and if TAIL appears then you give me −1 Rupee.

So if we play n round of this game we have generated i.i.d. sequence of random
variables X1, . . . ,Xn where each Xi satisfies

Xi =
{

+1 with prob. 1/2
−1 with prob. 1/2

Now
Sn = X1 + X2 + · · · + Xn

represents my gain after playing n rounds of this game.

Suppose we play the game n times and observe my gains/losses
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Probability
OBSERVATION CHANCE
S10 ≤ −2 0.38
i.e. I lost at least 6 out of 10 moderate

S100 ≤ −20 0.03
i.e. I lost at least 60 out of 100 unlikely

S1000 ≤ −200 1.36−10

i.e. I lost at least 600 out of 1000 impossible

OBSERVATION PROPORTION Probability
|S10| ≤ 1 |S10|

10 ≤ 0.1 0.25

|S100| ≤ 8 |S100|
100 ≤ 0.08 0.56

|S1000| ≤ 40 |S1000|
1000 ≤ 0.04 0.8

Law of Large Numbers

Suppose X1,X2, . . . is a sequence of i.i.d. random variables with E(| X1 |) <∞.
Then

X̄n =
n∑

i=1

Xi

n

converges to µ = E(X1): i.e. for all ε > 0

P (| X̄n − µ |> ε) −→ 0.

Event Probability Normal√
1000S1000

1000 ≤ 0 0.5126 Φ(0) = 0.5

√
1000S1000

1000 ≤ 1 0.85 Φ(1) = 0.84

√
1000 |S1000|

1000 ≤ 1.64 0.95 Φ(1.64) = 0.95

√
1000 |S1000|

1000 ≤ 1.96 0.977 Φ(1.96) = 0.975
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For the sequence of i.i.d. random variables X1, X2, . . . with

Xi =
{

+1 with prob. 1/2
−1 with prob. 1/2

we have for X̄n = Sn/n,

P
{√

n
(X̄n − µ

σ

)
≤ x

}
−→ Φ(x)

Central Limit Theorem

Suppose X1,X2, . . . is a sequence of i.i.d. random variables with E(| X1 |2) <∞.
Let µ = E(X1) and σ2 = E[(X1 − µ)2]. Let

X̄n =
n∑

i=1

Xi

n
.

Then
P

{√
n
(X̄n − µ

σ

)
≤ x} −→ Φ(x)

X ∼ Binomial(n, p), n large. Then

P (X ≤ a)

can be approximated by
Φ

(√
n
( a−np√

p(1−p)

))
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Introduction to R 

Hello, R! 

R is a free statistical software. It has many uses including  

1. performing simple calculations (like a very powerful pocket calculator)  
2. making plots (graphs, diagrams etc),  
3. analysing data using ready-made statistical tools (e.g.,, regression),  
4. and above all it is a powerful programming language.  

We shall acquaint ourselves with the basics of R in this tutorial.  

Starting R 

First you must have R installed in your computer. Then typically you have to hunt for an 

icon like and double click on it. If everything goes well, you should see a window 
pop up containing something like this.  
 
R : Copyright 2005, The R Foundation for Statistical Computing 
Version 2.1.1  (2005-06-20), ISBN 3-900051-07-0 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
  Natural language support but running in an English locale 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for a HTML browser interface to help. 
Type 'q()' to quit R. 
 
> 
 

The > is the R prompt. You have to type commands in front of this prompt and press the 
key on your keyboard.  

Simple arithmetics 

R may be used like a simple calculator. Type the following command in front of the 
prompt and hit .  
 
2 + 3 
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Ignore the [1] in the output for the time being. We shall learn its meaning later. Now try  
 
2 / 3 
 

What about the following? Wait! Don't type these all over again.  
 
2 * 3 
2 - 3 
 

 

 

 

Just hit the key of your keyboard to replay the last 
line. Now use the and cursor keys and the 

key to make the necessary changes.  

 

  

Exercise: What does R say to the following? 
 
2/0 
 

Guess what is going to be the result of  
 
2/Inf 
 

and of  
 
Inf/Inf 
 

So now you know about three different types of `numbers' that R can handle: ordinary 
numbers, infinities, NaN (Not a Number).  

Variables 

R can work with variables. For example  
 
x = 4 
 

assigns the value 4 to the variable x. This assignment occurs silently, so you do not see 
any visible effect immediately. To see the value of x type  
 
x 
 

This is a very important thing to remember:  

 

 

 

To see the value of the variable just type its name
and hit .  

 

  

Let us create a new variable  
 
y = -4 
 

Arnab Chakraborty21



Exercise: Try the following.  
 
x + y 
x - 2*y 
x^2 + 1/y 
 

The caret (^) in the last line denotes power. 
Exercise: What happens if you type the following?  
 
z-2*x 
 

and what about the next line  
 
X + Y 
 

Well, I should have told you already: R is case sensitive! 
Exercise: Can you explain the effect of this? 
 
x = 2*x 
 

Standard functions 

R knows most of the standard functions.  
Exercise: Try  
 
sin(x) 
cos(0) 
sin(pi) #pi is a built-in constant 
tan(pi/2) 
 

 

 

 

The part of a line after # is called a comment. It is 
meant for U, the UseR who use R! R does not care 
about comments. 

 

  

 

Exercise: While you are in the mood of using R as a calculator you may also try 
 
exp(1) 
log(3) 
log(-3) 
log(0) 
log(x-y) 
 

What is the base of the logarithm?  

Getting help 

R has many many features and it is impossible to keep all its nuances in one's head. So R 
has an efficient online help system. The next exercise introduces you to this.  
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Exercise: Suppose that you desperately need logarithm to the base 10. You want to 
know if R has a ready-made function to compute that. So type  
 
?log 
 

A new window (the help window) will pop up. Do you find what you need?  

 

 

 

Always look up the help of anything that does not
seem clear. The technique is to type a question mark
followed by the name of the thing you are interested
in. All words written like this in this tutorial 
have online help. 

 

  

Sometimes, you may not know the exact name of the function that you are interested in. 
Then you can try the help.search function.  
Exercise: Can R compute the Gamma function? As your first effort try  
 
Gamma(2) 
 

Oops! Apparently this is not the Gamma function you are looking for. So try  
 
help.search("Gamma") 
 

This will list all the topics that involve Gamma. After some deliberation you can see that 
``Special Functions of Mathematics'' matches your need most closely. So type  
 
?Special 
 

Got the information you needed?  
Searching for functions with names known only approximately is often frustrating.  

 

 

 

Sometimes it is easier to google the internet than
perform help.search! 

 

  

Functions 

We can type  
 
sin(1) 
 

to get the value sin 1. Here sin is a standard built-in function. R allows us to create 
new functions of our own. For example, suppose that some computation requires you to 
find the value of  
f(x) = x/(1-x)  
repeatedly. Then we can write function to do this as follows.  
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f = function(x) x/(1-x) 
 

Now you may type  
 
f(2) 
y = 4 
f(y) 
f(2*y) 
 

Here f is the name of the function. It can be any name of your choice (as long as it does 
not conflict with names already existing in R).  

 

Anatomy of an R function
A couple of points are in order here. First, the choice of the name depends completely on 
you. Second, the name of the argument is also a matter of personal choice. But you must 
use the same name also inside the body of the function. It is also possible to write 
functions of more than one variable.  
Exercise: Try out the following. 
 
g = function(x,y) (x+2*y)/3
g(1,2) 
g(2,1) 
 

Exercise: Write a function with name myfun that computes x+2*y/3. Use it to compute 
2+2*3/3.  

Vectors 

So far R appears little more than a sophisticated calculator. But unlike most calculators it 
can handle vectors, which are basically lists of numbers.  
 
x = c(1,2,4,56) 
x 
 

The c function is for concatenating numbers (or variables) into vectors.  
Exercise: Try  
 
y = c(x,c(-1,5),x) 
length(x) 
length(y) 
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There are useful methods to create long vectors whose elements are in arithmetic 
progression:  
 
x = 1:20 
4:-10 
 

If the common difference is not 1 or -1 then we can use the seq function  
 
y=seq(2,5,0.3) 
y 
 

Exercise: Try the following  
 
1:100 
 

Do you see the meaning of the numbers inside the square brackets? 
Exercise: How to create the following vector in R?  
1, 1.1, 1.2, , ... 1.9, 2, 5, 5.2, 5.4, ... 9.8, 10  
Hint: First make the two parts separately, and then concatenate them. 

Working with vectors 

Now that we know how to create vectors in R, it is time to use them. There are basically 
three different types of functions to handle vectors.  

1. those that work entrywise  
2. those that summarise a vector into a few numbers (like finds the sum of all the numbers)  
3. others  

Exercise: Most operations that work with numbers act entrywise when applied to 
vectors. Try this.  
 
x = 1:5 
x^2 
x+1 
2*x 
sin(x) 
exp(sqrt(x)) 
 

It is very easy to add/subtract/multiply/divide two vectors entry by entry.  
Exercise:  
 
x = c(1,2,-3,0) 
y = c(0,3,4,0) 
x+y 
x*y 
x/y 
2*x-3*y 
 

Next we meet some functions that summarises a vector into one or two numbers.  
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Exercise: Try the following and guess the meanings of commands. 
 
val = c(2,1,-4,4,56,-4,2) 
sum(val) 
mean(val) 
min(val) 
max(val) 
range(val) 
 

Exercise: Guess the outcome of  
 
which.min(val) 
which.max(val) 
 

Check your guess with the online help. 

Extracting parts of a vector 

If x is vector of length 3 then its entries may be accessed as x[1], x[2] and x[3].  
 
x = c(2,4,-1) 
x[1] 
x[2]+x[3] 
i = 3 
x[i] 
x[i-1] 
x[4] 
 

Note that the counting starts from 1 and proceeds left-to-right. The quantity inside the 
square brackets is called the subscript or index.  

 

 

 

It is also possible to access multiple entries of a
vector by using a subscript that is itself a vector. 

 

  

 
x = 3:10 
x[1:4] 
x[c(2,4,1)] 
 

Exercise: What is the effect of the following?  
 
x = c(10,3,4,1) 
ind = c(3,2,4,1) #a permutation of 1,2,3,4
x[ind] 
 

This technique is often useful to rearrange a vector. 
Exercise: Try the following to find how R interprets negative subscripts. 
 
x = 3:10 
x 
x[-1] 
x[-c(1,3)] 
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Subscripting allows us to find one or more entries in a vector if we know the position(s) 
in the vector. There is a different (and very useful) form of subscripting that allows us to 
extract entries with some given property.  
 
x = c(100,2,200,4) 
x[x>50] 
 

The second line extracts all the entires in x that exceed 50. There are some nifty things 
that we can achieve using this kind of subscripting. To find the sum of all entries 
exceeding 50 we can use  
 
sum(x[x>50]) 
 

How does this work? If you type  
 
x>50 
 

you will get a vector of TRUEs and FALSEs. A TRUE stands for a case where 
the entry exceeds 50. When such a True-False vector is used as the subscript only the 
entries corresponding to the TRUEs are retained. Even that is not all. Internally a 

TRUE is basically a 1, while a FALSE is a 0. So if you type  
 
sum(x>50) 
 

you will get the number of entries exceeding 50.  

 

 

 

The number of entries satisfying some given property
(like ``less than 4'')may be found easily like  
 
sum(x<4) 
 

 

  

Exercise: If  
 
val = c(1,30,10,24,24,30,10,45) 
 

then what will be the result of the following?  
 
sum(val >= 10 & val <= 40) 
sum(val > 40 | val < 10) # | means "OR" 
sum(val == 30) # == means "equal to" 
sum(val != 24) # != means "not equal to" 
 

Be careful with ==. It is different from =. The former means comparing for equality, 
while the latter means assignment of a value to a variable.  
Exercise: What does 
 
mean(x>50) 
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denote?  
Exercise: Try and interpret the results of the following. 
 
x = c(100,2,200,4) 
sum(x>=4) 
mean(x!=2)  
x==100   
 

Sorting 

 
x = c(2,3,4,5,3,1) 
y = sort(x) 
y #sorted 
x #unchanged 
 

Exercise: Look up the help of the sort function to find out how to sort in 
decreasing order.  

Sometimes we need to order one vector according to another vector.  
 
x = c(2,3,4,5,3,1) 
y = c(3,4,1,3,8,9) 
ord = order(x) 
ord 
 

Notice that ord[1] is the position of the smallest number, ord[2] is the position of the 
next smallest number, and so on.  
 
x[ord] #same as sort(x) 
y[ord] #y sorted according to x 
 

Matrices 

R has no direct way to create an arbitrary matrix. You have to first list all the entries of 
the matrix as a single vector (an m by n matrix will need a vector of length mn) and then 
fold the vector into a matrix. To create  

 
1 2 
3 4 

 

 

we first list the entries column by column to get  
1, 3, 2, 4.  
To create the matrix in R:  
 
A = matrix(c(1,3,2,4),nrow=2) 
A 
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The nrow=2 command tells R that the matrix has 2 rows (then R can compute the number 
of columns by dividing the length of the vector by nrow.) You could have also typed:  
 
A <- matrix(c(1,3,2,4),ncol=2) #<- is same as = 
A 
 

to get the same effect. Notice that R folds a vector into a matrix column by column. 
Sometimes, however, we may need to fold row by row :  
 
A = matrix(c(1,3,2,4),nrow=2,byrow=T) 
 

The T is same as TRUE.  
Exercise: Matrix operations in R are more or less straight forward. Try the following. 
 
A = matrix(c(1,3,2,4),ncol=2) 
B = matrix(2:7,nrow=2) 
C = matrix(5:2,ncol=2) 
dim(B) #dimension 
nrow(B) 
ncol(B) 
A+C 
A-C 
A%*%C #matrix multiplication 
A*C  #entrywise multiplication 
A%*%B 
t(B) 
 

Subscripting a matrix is done much like subscripting a vector, except that for a matrix we 
need two subscripts. To see the (1,2)-th entry (i.e., the entry in row 1 and column 2) of A 
type  
 
A[1,2] 
 

Exercise: Try out the following commands to find what they do. 
 
A[1,] 
B[1,c(2,3)] 
B[,-1] 
 

Working with rows and columns 

Consider the following.  
 
A = matrix(c(1,3,2,4),ncol=2) 
sin(A) 
 

Here the sin function applies entrywise. Now suppose that we want to find the sum of 
each column. So we want to apply the sum function columnwise. We achieve this by 
using the apply function like this:  
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apply(A,2,sum) 
 

The 2 above means columnwise. If we need to find the rowwise means we can use  
 
apply(A,1,mean) 
 

Lists 

Vectors and matrices in R are two ways to work with a collection of objects. Lists 
provide a third method. Unlike a vector or a matrix a list can hold different kinds of 
objects. Thus, one entry in a list may be a number, while the next is a matrix, while a 
third is a character string (like "Hello R!"). Lists are useful to store different pieces of 
information about some common entity. The following list, for example, stores details 
about a student.  
 
x = list(name="Rama", nationality="Indian", height=5.5, 
marks=c(95,45,80)) 
 

We can now extract the different fields of x as  
 
names(x) 
x$name 
x$hei #abbrevs are OK 
x$marks 
x$m[2] 
x$na #oops! 
 

In the coming tutorials we shall never need to make a list ourselves. But the statistical 
functions of R usually return the result in the form of lists. So we must know how to 
unpack a list using the $ symbol as above.  

 

 

 

To see the online help about symbols like $ type 
 
?"$" 
 

Notice the double quotes surrounding the symbol. 

 

  

Let us see an example of this. Suppose we want to write a function that finds the length, 
total and mean of a vector. Since the function is returning three different pieces of 
information we should use lists as follows.  
 
f = function(x) list(len=length(x),total=sum(x),mean=mean(x)) 
 

Now we can use it like this:  
 
dat = 1:10 
result = f(dat) 
names(result) 
result$len 
result$tot 
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result$mean 
 

Doing statistics with R 

Now that we know R to some extent it is time to put our knowledge to perform some 
statistics using R. There are basically three ways to do this.  

1. Doing elementary statistical summarisation or plotting of data  
2. Using R as a calculator to compute some formula obtained from some statistics text.  
3. Using the sophisticated statistical tools built into R.  

In this first tutorial we shall content ourselves with the first of these three. But first we 
need to get our data set inside R.  

Loading a data set into R 

We shall consider part of a data set given in  
Distance to the Large Magellanic Cloud: The RR Lyrae Stars Gisella Clementini, 
Raffaele Gratton, Angela Bragaglia, Eugenio Carretta, Luca Di Fabrizio, and Marcella 
Maio Astronomical Journal 125, 1309-1329 (2003).  
We have slightly doctored the data file to make it compatible with R. The file is called 
LMC.dat and resides in some folder F:\astro, say. The data set has two columns with 
the headings Method, Dist and Err. Here are the first few lines of the file:  
 
Method                  Dist        Err 
"Cepheids: trig. paral."  18.70     0.16 
"Cepheids: MS fitting"    18.55     0.06 
"Cepheids: B-W"          18.55     0.10 
 

There are various ways to load the data set. One is to use  
 
LMC = read.table("F:/astro/LMC.dat", header=T) 
 

Note the use of forward slash (/) even if you are working in Windows. Also the 
header=T tells that the first line of the data file gives the names of the columns. Here we 
have used the absolute path of the data file. In Unix the absolute path starts with a 
forward slash (/).  
 
dim(LMC) 
names(LMC) 
LMC 
 

This object LMC is like a matrix (more precisely it is called a data frame). Each column 
stores the values of one variable, and each row stores a case. Its main difference with a 
matrix is that different columns can hold different types of data (for example, the Method 
column stores character strings, while the other two columns hold numbers). Otherwise, a 
data frame is really like a matrix. We can find the mean of the Dist variable like this  
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mean(LMC[,2]) 
mean(LMC[,"Dist"]) 
 

Note that each column of the LMC matrix is a variable, so it is tempting to write  
 
mean(Dist) 
 

but this will not work, since Dist is inside LMC. We can ``bring it out'' by the command  
 
attach(LMC) 
 

Now the command  
 
mean(Dist) 
 

works perfectly. All the values of the Dist variable are different measurements of the 
same distance. So it is only natural to use the average as an estimate of the true distance. 
But the Err variable tells us that not all the measurements are equally reliable. So a better 
estimate might be a weighted mean, where the weights are inversely proportional to the 
errors. We can use R as a calculator to directly implement this formula:  
 
sum(Dist/Err)/sum(1/Err) 
 

or you may want to be a bit more explicit  
 
wt = 1/Err 
sum(Dist*wt)/sum(wt) 
 

Actually there is a smarter way than both of these.  
 
weighted.mean(Dist, 1/Err) 
 

Script files 

So far we are using R interactively where we type commands at the prompt and the R 
executes a line before we type the next line. But sometimes we may want to submit many 
lines of commands to R at a single go. Then we need to use scripts.  

 

 

 

Use script files to save frequently used command
sequences. Script files are also useful for replaying
an analysis at a later date.  

 

  

A script file in R is a text file containing R commands (much as you would type them at 
the prompt). As an example, open a text editor (e.g., notepad in Windows, or gedit in 
Linux). Avoid fancy editors like MSWord. Create a file called, say, test.r containing 
the following lines.  
 
x = seq(0,10,0.1) 
y = sin(x) 
plot(x,y,ty="l") #guess what this line does! 
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Save the file in some folder (say F:/astro). In order to make R execute this script type  
 
source("F:/astro/test.r") 
 

If your script has any mistake in it then R will produce error messages at this point. 
Otherwise, it will execute your script.  
The variables x and y created inside the command file are available for use from the 
prompt now. For example, you can check the value of x by simply typing its name at the 
prompt.  
 
x 
 

Commands inside a script file are executed pretty much like commands typed at the 
prompt. One important difference is that in order to print the value of a variable x 
on the screen you have to write  
 
print(x) 
 

Merely writing  
 
x 
 

on a line by itself will not do inside a script file.  

 

 

 

Printing results of the intermediate steps using
print from inside a script file is a good way to 
debug R scripts.  
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