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1. A problem.

Van den Bergh (1985, ApJ 297, p. 361) considered the luminosity func-
tion (LF) for globular clusters in various galaxies.

V-d-B’s conclusion: The LF for clusters in the Milky Way is adequately
described by a normal distribution.

f(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
.

µ(≡ M0) is the mean visual absolute magnitude and σ is the standard
deviation of visual absolute magnitude. Magnitudes are log variables (a log-
normal distribution). This appears to be one of the few normal distributions
in astronomy.

Statistical Problems:
1. On the basis of collected data, estimate the numbers µ and σ. Also,

derive a plausible range of values for each of them; etc.
2. V-d-B concludes that the LF is “adequately described” by a normal

distribution. How can we quantify the plausibility of this conclusion?

2. Some terminology.

Population: This term is used in two different contexts. If you are
studying the luminosity function of globular clusters, then the globular clus-
ters constitute the population and you select a sample from this population
and make measurements to draw conclusions. Second context, and this is
how we use, is the following. You want to study a particular attribute X,
like the luminosity. You make a probabilistic model for this attribute. For
example you may want to say that the possible values of X follow a partic-
ular density, f(x). Then this model is called the population. Thus, normal
population means that the attribute under study obeys density

f(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
,

for some numbers µ and σ > 0.
Remember, this means that the chances of your observation falling in

the interval, say, (4, 10) is the area under the above curve between these
two limits. In practice, this means the proportion of observations that lie in
this interval equals, approximately, this area. Only when we prescribe the
values of µ and σ, the model is completely specified. Otherwise, it is a class
of models for the attribute.

The function f(x) is called the probability density function (p.d.f.)
of X. A statistical model is a choice of p.d.f. for X. We wish to choose a
model which “adequately describes” data collected on X. A parameter is a
number that appears in the choice of the density, which is to be determined
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from observations. For example, µ and σ are parameters for the p.d.f. of
the LF for Galactic globulars. parameter space is the set of permissible
values of the parameters. In the above normal model, the parameter space
is Ω = {(µ, σ) : −∞ < µ < ∞, σ > 0}. Thus, for example, σ can not be
negative.

A random sample means mutually independent random variables X1,
. . . , Xn; which all have the same distribution as X. Here n is called the size
of the sample. In practice, this amounts to data values X1, . . . , Xn which are
fully representative of the population. In general, Roman letters are used
to represent data, and Greek letters are used to represent parameters. For
example θ, µ, σ are parameters where as X1, · · · , X5, are data. A statistic
is a number computed from the observations, that is, from the random
sample X1, . . . , Xn. Here are two examples. Sample mean defined as X̄ =
1
n

n∑
i=1

Xi and sample variance defined as S2 = 1
n−1

n∑
i=1

(Xi−X̄)2 are statistics.

In general, a statistic could be any function Y = u(X1, . . . , Xn) of the
observations. The sampling distribution of a statistic is the probability
distribution of the statistic. For example, if X1, · · · , Xn is sample from the
normal population described above, and the sample mean X̄ is the statistic,
then the sampling distribution of this statistic is also normal, but with
parameters µ and σ/

√
n.

An estimator or estimate for a parameter is a statistic. Thus estimator
is nothing but a number computed from the sample. But when you say
estimator, you should also say the parameter for which this is proposed as
an estimator. For example X̄ is an estimator for µ and S2 is an estimator
for σ2. These are also called point estimators.

3. Estimation.

As mentioned earlier, unless the parameters are explained, the model
is not fully specified. Having proposed a class of models for the attribute
under study, how do we estimate the parameters, to fully specify the model.
For example, in modeling the LF, the proposal was that a normal model fits
the data. But which normal model?

How do we construct estimates and how do we know a good estimate
from a bad one. There are several methods for constructing estimates for the
parameters. Judicious guessing, the method of Maximum Likelihood, the
method of Moments, method of Minimum χ2, Bayesian methods, Decision-
theoretic methods etc. There are several criteria proposed for estimators.
Unbiased estimator, Consistent estimator, Efficient estimator, etc. Keep in
mind that an estimator is a random variable, because it depends on the
observations and the observations are, in turn, random variables.

An estimator Y for a parameter θ is unbiased if E(Y ) = θ. Intuitively,
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Y is unbiased if its long-term average value is equal to θ. In the above
normal population model, X̄ is an unbiased estimator of µ. This is because,
E(Xi) = µ for each i. Also S2 is an unbiased estimator of σ2. On the other
hand, if you put Y as the largest of the observations, then Y is NOT an
unbiased estimator. It appears that, after all, this maximum is one of the
observations and each observation has expected value µ, so Y must have the
same property. But it is not so. Indeed, if the sample size is at least two,
then E(Y ) > µ.

An estimator is consistent if it gets closer and closer to the parameter
value as the sample size increases. One way of stating this is to say that
the chances of it differing from the parameter, by a preassigned quantity,
become smaller and smaller, no matter what the preassigned quantity is.
More precisely, an estimator Y , for a parameter θ, is consistent if for any
ε > 0, we have P (|Y − θ| ≥ ε) −→ 0 as n → ∞. You should remember
that the estimator Y depends on the sample size n. Actually, we should
have written Yn for the estimator based on a sample of size n. In the above
normal population model X̄ is a consistent estimator of µ. This is because,
given any ε > 0,

P (|X̄ − µ| ≥ ε) ≤ var(X̄)
ε2

=
σ2

ε2
1
n
−→ 0.

Here we have used the Chebyshev’s inequality.
This argument shows that for any model, with µ denoting the population

mean, X̄ is a consistent estimator of µ. This depends only on the fact that
the variance of X̄ is σ2/n where σ2 is population variance, assumed to be
finite. In fact the same argument gives us a general fact: If Yn is an unbiased
estimator (based on a sample of size n) of θ and if var(Yn) −→ 0, then Yn

is a consistent estimator of θ.
If Y is unbiased estimator of θ, then, of course, E(Y −θ)2 is nothing but

the variance of Y . However, if Y is not unbiased, then this is no longer the
variance of Y . This quantity E(Y − θ)2 is called the Mean Square Error
(MSE). An estimator is said to have minimum mean square error if
this quantity is the least possible. When the estimator is unbiased, then
mean square error being its variance, an unbiased estimator with minimum
mean square error is called Minimum Variance Unbiased Estimator
(MVUE). X̄ has minimum variance among all estimators which are linear
combinations of X1, . . . , Xn.

4. Confidence intervals.

Point estimators are not always perfect. We wish to quantify the accu-
racy of the estimator. One way to measure the accuracy is to see its variance.
The smaller the variance, the better it is. But there is a fundamentally dif-
ferent method of looking at the problem of estimation. Instead of saying
that a number is an estimator of the parameter µ, why not prescribe an
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interval and quantify by saying that the parameter lies in this interval with
a certain probability which is high. This leads to the notion of confidence
intervals.

Let us start with our normal example for LF. We know that X̄ is an
unbiased estimator of µ, its variance is σ2/n and in fact X̄ ∼ N(µ, σ2

n ). As
a result,

X̄ − µ

σ/
√

n
∼ N(0, 1).

If Z ∼ N(0, 1), then P (−1.96 < Z < 1.96) = 0.95, so that

P
(
− 1.96 <

X̄ − µ

σ/
√

n
< 1.96

)
= 0.95.

The above inequality can be restated as

P
(
X̄ − 1.96

σ√
n

< µ < X̄ + 1.96
σ√
n

)
= 0.95.

The probability that the interval
(
X̄ − 1.96

σ√
n

, X̄ + 1.96
σ√
n

)

“captures” µ is 0.95. This interval is called a 95% confidence interval for
µ. It is a plausible range of values for µ together with a quantifiable measure
of its plausibility.

A confidence interval is a random interval; it changes as the collected
data changes. This explains why we say “a 95% confidence interval” rather
than “the 95% confidence interval”. We chose the “cutoff limits” ±1.96
symmetrically around 0 to minimize the length of the confidence interval.
“cutoff limits” are also called “percentage points”.

Example (devised from van den Bergh, 1985): n = 148 Galactic globular
clusters. x̄ = −7.1 mag. We assume that σ = 1.2 mag. Let M0 be the
population mean visual absolute magnitude. A 95% confidence interval for
M0 is

(
x̄− 1.96

σ√
n

, x̄ + 1.96
σ√
n

)
=

(
− 7.1− 1.96

1.2√
148

,−7.1 + 1.96
1.2√
148

)
.

Thus, (−7.1∓ 0.193) is a plausible range of values for M0.
Warning: Don’t bet your life that your 95% confidence interval has cap-

tured µ! There is a chance (5%) of it not capturing. Should we derive inter-
vals with higher levels of confidence, 96%, 98%, 99%? Return to the tables
of the N(0, 1) distribution and observe that P (−2.33 < Z < 2.33) = 0.98.
Repeat the earlier arguments. Assuming that σ is known,

P
(
− 2.33 <

X̄ − µ

σ/
√

n
< 2.33

)
= 0.98.
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leading to a 98% confidence interval,
(
X̄ − 2.33

σ√
n

, X̄ + 2.33
σ√
n

)
.

If σ is unknown then the method outlined above for getting confidence
intervals does not work. A basic principle in statistics is: Replace any un-
known parameter with a good estimator. Consider the LF data problem.
We have a random sample X1, . . . , Xn drawn from N(µ, σ2). We want to
construct confidence interval for µ using the statistic X̄−µ

S/
√

n
. To repeat the

above method,we need the sampling distribution of this statistic. It is not
normally distributed.

The t-distribution: If X1, . . . , Xn is a random sample drawn from
N(µ, σ2) then the statistic

T =
X̄ − µ

S/
√

n

has a t-distribution with n− 1 degrees of freedom. Once this is granted, we
construct confidence intervals as before. Suppose that n = 16, then see the
tables of the t-distribution with 15 degrees of freedom.

P (−2.131 < T15 < 2.131) = 0.95.

Therefore

P
(
− 2.131 <

X̄ − µ

S/
√

n
< 2.131

)
= 0.95.

Thus, a 95% confidence interval for µ is

(
X̄ − 2.131

S√
n

, X̄ + 2.131
S√
n

)
.

For example, with n = 16, x̄ = −7.1 mag, s = 1.1 mag, a 95% confidence
interval for µ is −7.1∓ 0.586. If you are curious about the t-density, here it
is for p degrees of freedom.

f(t) =
Γ((p + 1)/2)

Γ(p/2)
1√
pπ

(
1 +

t2

p

)−(p+1)/2

−∞ < t < ∞.

The χ2-distribution: So far we have been considering confidence inter-
vals for µ. Let us now discuss confidence intervals for σ based on a random
sample X1, . . . , Xn, under normal model. We know S2 is an unbiased and
consistent estimator of σ2. What is the sampling distribution of S2? The
statistic (n − 1)S2/σ2 has a chi-squared χ2 distribution with n − 1 degrees
of freedom. We now construct confidence intervals as before. Consult the
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tables of the χ2 distribution. Find the percentage points, and solve the
various inequalities for σ2. Denote the percentage points by a and b.

P (a < χ2
n−1 < b) = 0.95.

We find a, b using tables of the χ2 distribution. Usually, this is done by
choosing a so that P (χ2

n−1 < a) = .025 and P (χ2
n−1 > b) = .025. Solve for

σ2 the inequalities: a < (n−1)S2

σ2 < b. A 95% confidence interval for σ2 is

((n− 1)S2

b
,
(n− 1)S2

a

)

For example, if n = 16, s = 1.2 mag, percentage points from the χ2 tables
(with 15 degrees of freedom) are 6.262 and 27.49. Hence a 95% confidence
interval for σ2 is

(15× (1.2)2

27.49
,
15× (1.2)2

6.262

)
= (0.786, 3.449).

If you are curious about the χ2 density, here it is for p degrees of freedom.

f(x) =
2−p/2

Γ(p/2)
e−x/2 x

p
2
−1 x > 0.

If we want a greater the level of confidence, the confidence interval will,
in general, be longer. The larger the sample size, the shorter will be the
confidence interval. How do we choose n? In our 95% confidence intervals
for µ, the term 1.96σ/

√
n is called the margin of error. We choose n to

have a desired margin of error. To have a margin of error of 0.01 mag, we
choose n so that

1.96σ√
n

= 0.01, that is, n =
(1.96σ

0.01

)2
.

A very interesting question arises now. Could we get the above con-
fidence interval for µ only because we assumed a normal model? On the
face of it this seems so, because we used the fact that a certain statistic
is normal. There is indeed more to this construction. Here is a modified
Central Limit Theorem that will help us. Let X1, . . . , Xn be a random
sample; µ be the population mean; X̄ be the sample mean and S be the
sample standard deviation. If n is large, then

X̄ − µ

S/
√

n
≈ N(0, 1).

In other words, for large values of n, the probability that the above statistic
lies between a and b is same as the corresponding area under the standard
normal curve. The conclusion does not depend on the population probability
distribution of the Xi. As long as the population mean and variance are
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finite, this will hold. Instead of the exact sampling distribution used earlier,
we can use this approximate distribution to construct confidence intervals.
The resulting confidence intervals for µ also do not depend on the population
probability distribution. Several papers on LF for globular clusters have
large sample sizes like 300, 1000, etc.

5. Testing of Hypotheses.

A LF researcher believes that M0 = −7.7 mag for the M31 globular
clusters. The researcher collects data — using a random sample — from
M31. A natural question: “Are the data strongly in support of the claim
that M0 = −7.7 mag?”

A statistical hypothesis is a statement about the parameters of the
population. A statistical test of significance is a procedure for compar-
ing observed data with a hypothesis whose plausibility is to be assessed.
The null hypothesis is the statement being tested, usually denoted by H0.
The alternative hypothesis is a competing statement, usually denoted by
Ha. In general, the alternative hypothesis is chosen as the statement for
which there is likely to be supporting evidence. In the case of our M31 LF
researcher, the null hypothesis is H0: M0 = −7.7. An alternative hypothesis
is Ha: M0 6= −7.7. This is an example of a two-sided alternative hypothe-
sis. If we have reasons to believe that M0 can not be above −7.7, then we
should make the alternative hypothesis one sided, namely, Ha: M0 < −7.7.

The basic idea in devising a test is the following. Based on the observa-
tions, we calculate a specially chosen informative statistic. See which of the
hypotheses makes the observed value of this chosen statistic more plausible.
First, some terminology is needed. A test statistic is a statistic that will
be calculated from the observed data. This will measure the compatibility
of H0 with the observed data. It will have a sampling distribution free of
unknown parameters (under the null hypothesis). A rejection rule is a
rule which specifies the values of the test statistic for which we reject H0.
Here is an illustration.

Example: A random sample of 64 measurements has mean x̄ = 5.2 and
standard deviation s = 1.1. Test the null hypothesis H0 : µ = 4.9 against
the alternative hypothesis Ha : µ 6= 4.9

1. The null and alternative hypotheses are H0 : µ = 4.9, Ha : µ 6= 4.9.
2. The test statistic is T = X̄−4.9

S/
√

n
.

3. The distribution of the test statistic T , under the assumption that
H0 is valid, is ≈ N(0, 1).

4. The rejection rule: Reject H0 if |T | > 1.96, the upper 95 percentage
point in the tables of the standard normal distribution. Otherwise, we fail
to reject H0.
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This cutoff point 1.96 is also called a critical value. This choice of
critical value results in a 5% level of significance of the test of hypotheses.
This mean that that there is a 5% chance of our rejecting hypothesis H0,
when it is actually true.

5. Calculate the value of the test statistic. It is
x̄− 4.9
s/
√

n
=

5.2− 4.9
1.1/

√
64

= 2.18

6. Decision: We reject H0; the calculated value of the test statistic
exceeds the critical value, 1.96.

We report that the statistic is significant. There is a statistically
significant difference between the population mean and the hypothesized
value of 4.9.

7. The P -value of the test is the smallest significance level at which the
statistic is significant.

6. Return to χ2.

We briefly encountered χ2 in discussing confidence intervals for σ2. We
now discuss a little more of this. This arises in both testing goodness of
fit, and also in estimation.

We first start with testing problem. This is best explained with a discrete
model. Suppose that you have a random variable X that takes r values
a1, · · · , ar. Someone proposes a hypothesis that for each i the chance of
value ai is pi. Here pi > 0 for all i and

∑
pi = 1. How do we test this? Make

n independent observations of X and suppose that in your data the value
ai appears ni times. Of course

∑
ni = n. If the hypothesis is correct, we

expect to see the value ai approximately npi many times. So the discrepancy
relative to our expectation is (ni − npi)2/(npi) and the total discrepancy is

r∑

1

(ni − npi)2

npi

and this is named as the χ2 value for the data. This statistic is called χ2

statistic. It can be shown that for large n, this statistic indeed has a χ2

distribution with (r − 1) degrees of freedom. This fact can be used to test
whether the proposed hypothesis is plausible — large values of this statistic
being not in favour of the hypothesis.

Now We turn to an important method of estimation. As in the earlier
para, assume that X takes r values a1, · · · , ar. Let P (X = ai) = pi(θ), that
is, the probability depends on a parameter θ. Once θ is found out, the value
pi is known. How do we estimate θ? Here is a way to do it, choose that
value of θ which minimizes the discrepancy. In other words, choose that
value of θ for which

χ2(θ) =
r∑

1

(ni − npi)2

npi
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is minimum. Note that this is not a statistic, it depends on the parameter
θ. You use calculus, differentiate w.r.t. θ, remember pi are functions of θ.
You end up solving

r∑

1

(
ni − npi(θ)

pi(θ)
+

(ni − npi(θ))2

2np2
i (θ)

)
dpi(θ)

dθ
= 0.

This is called the minimum χ2 method of estimation. Unfortunately,
the presence of θ in the denominator makes things messy. So one uses the
modified minimum χ2 method where, one ignores the second term in
the above equation.

If the model is continuous and not discrete, one groups the observations
and proceeds. We shall not go into the details.

7. Truncation.

Sometimes we need to use truncated distributions for modeling. As an
example, suppose that in the LF study, we believe that there is an absolute
magnitude limit. Say, we believe that the magnitude can not be above M∗.
Then we should not model the LF data with normal distribution. We should
use the truncated normal.

f(x;µ, σ2) =

{
C√
2πσ

exp
[
− (x−µ)2

2σ2

]
, if x ≤ M∗

0, if x > M∗

where the constant C is so chosen as to make the area under the curve
unity. See Garcia-Munoz, et al. “The relative abundances of the elements
silicon through nickel in the low energy galactic cosmic rays,” In: Proc.
Int’l. Cosmic Ray Conference, Plovdiv, Bulgaria, 1977, Conference Papers.
Volume 1. Sofia, B’lgarska Akademiia na Naukite, 1978, p. 224-229.

As another example, consider, Protheroe, et al. “Interpretation of cos-
mic ray composition - The path length distribution,” ApJ., 247 1981. If our
instruments can not detect rays with path length below a certain value, then
our observations will not be a random sample from the exponential popula-
tion. Rather, they would only be a sample from the truncated exponential,
namely,

f(x; θ1, θ2) =

{
θ−1
1 exp[−(x− θ2)/θ1], if x ≥ θ2

0, if x < θ2

Here we have two parameters θ1 > 0 and θ2 > 0.
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