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Do Random phenomena exist in Nature?

Which way a coin tossed in air will fall may be
completely determined by laws of physics. The
only problem in figuring out the trajectory and
hence the face of the coin when it is on ground
is that we have to measure too many
parameters, e.g. angular momentum of rotation,
force at the time of toss, wind pressure at
various instants during the rotation of the coin,
etc.!



Which way an electron will spin is also not
known and so modelling it will require
incorporating a random structure.

But we cannot exclude the possibility that
sometime in future, someone will come up with
a theory that will explain the spin.



Thus we often come across events whose
outcome is uncertain. The uncertainty could be
because of our inability to observe accurately all
the inputs required to compute the outcome.

It may be too expensive or even
counterproductive to observe all the inputs.



The uncertainty could be due to the current level
of understanding of the phenomenon.

The uncertainty could be on account of the
outcome depending on choices made by a
group of people at a future time - such as
outcome of an election yet to be held.



Cosmic distance ladder
The objects in the solar system were measured
quite accurately by ancient Greeks and
Babylonians using geometric and trigonometric
methods.



see also www.math.ucla.edu/˜

tao/preprints/Slides/Cosmic%20Distance%20Ladder.



The distance to the stars in the second lot are
found by ideas of parallax, calculating the
angular deviation over 6 months. First done by
the mathematician Friedrich Bessel. The error
here is of the order of 100 light years.



The distances of the moderately far stars are
obtained by a combination of their apparent
brightness and the distance to the nearby stars.
This method works for stars upto 300,000 light
years and the error is significantly more.

The distance to the next and final lot of stars is
obtained by plotting the oscillations of their
brightness. This method works for stars upto
13,000,000 light years!



At every step of the distance ladder, errors and
uncertainties creep in. Each step inherits all the
problems of the ones below, and also the errors
intrinsic to each step tend to get larger for the
more distant objects; thus the spectacular
precision at the base of the ladder degenerates
into much greater uncertainty at the very top.



So we need to understand UNCERTAINTY.

And the only way of understanding a notion
scientifically is to provide a structure to the
notion.

A structure rich enough to lend itself to
quantification.



The structure needed to understand a coin toss
is intuitive.
We assign a probability 1/2 to the outcome
HEAD and a probability 1/2 to the outcome TAIL
of appearing.



Similarly for each of the outcomes 1,2,3,4,5,6 of
the throw of a dice we assign a probability 1/6
of appearing.



Similarly for each of the outcomes
000001, . . . , 999999of a lottery ticket we assign
a probability 1/999999of being the winning
ticket.



Of course, we could obtain the structure of the
uncertainty in a coin toss from the example of
throwing a dice.

In particular if we declare as HEAD when the
outcome of a throw of a dice is an even number,
and if we declare as TAIL when the outcome of
a throw of a dice is an odd number, then we
have the same structure as that we had from a
coin toss.



More generally, associated with any experiment
we have an outcome space Ω consisting of
outcomes {o1, o2, . . . , om}.

Coin Toss – Ω = {H, T}

Dice – Ω = {1, 2, 3, 4, 5, 6}

Lottery – Ω = {1, . . ., 999999}



Each outcome is assigned a probability

Coin Toss – pH = 1/2, pT = 1/2

Dice – pi = 1/6 for i = 1, . . . , 6

Lottery – pi = 1/999999for i = 1, . . . , 999999



More generally, for an experiment with an
outcome space Ω = {o1, o2, . . . , om}. we
assign a probability pi to the outcome oi for
every i in such a way that the probabilities add
up to 1.

The set Ω = {o1, o2, . . . , om} is called a sample
space.

A subset E ⊆ Ω is called an event.



We may be gambling with dice, so we could
have a situation like

outcome 1 2 3 4 5 6
money amount −8 2 0 4 −2 4

Our interest in the outcome is only vis-á-vis it’s
association with the monetary amount.



So we are interested in a mapping (i.e. a
function) of the outcome space Ω to the reals R

Such functions are called random variables.

The probabilistic properties of these random
variables can be read out from the probabilities
assigned to the outcomes of the underlying
outcome space.



The probability that you win 4 rupees, i.e.
P{X = 4} means you want to find that the
number 4 or the number 6 came out on the dice,
i.e. P{4, 6} Thus P{ω : X(ω) = 4} =

P{4, 6} = (1/6) + (1/6) = 1/3.

Similarly the probability that you do not lose any
money is the probability of the event that either
2, 3, 4 or 6 came out on the dice, and this
probability is (1/6) + (1/6)+(1/6) + (1/6) = 2/3.



What are we doing?
Recall our assignment of probabilities P(oi) = pi

on the outcome space Ω = {o1, o2, . . . , om}.

For an event E = {oi1, oi2, . . . , oik}, we define

P(E) = pi1 + pi2 + · · ·+ pik.

Easy to check that if A, B are mutually disjoint,
i.e. A ∩ B = φ then

P(A ∪ B) = P(A) + P(B)



U

BA

A    B

More generally, we can check that for any two
events A, B

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).



Similarly, for three events A, B, C

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

−P(A ∩ B)− P(A ∩ C)− P(B ∩ C)

+P(A ∩ B ∩ C)

This has a generalization to n events.



How do we assign the probabilities pi to the
elementary outcomes?

The simplest case is when due to inherent
symmetries present, we can model all the
elementary events (i.e.outcomes) as being
equally likely.



When an experiment results in m equally likely
outcomes o1, o2, . . . , om, the probability of an
event A is

P(A) =
#A

m
i.e. the ratio of the number of favourable
outcomes to the total number of outcomes.



Example: Toss a coin three times

Ω = {HHH,
HHT, HTH, THH,
HTT, THT, TTH,
TTT}
p(∗ ∗ ∗) = 1/8



Example: Toss a coin three times
No. of Heads in 3 tosses

Ω = {HHH,
HHT, HTH, THH,
HTT, THT, TTH,
TTT}
p(∗ ∗ ∗) = 1/8



Example: Toss a coin three times
No. of Heads in 3 tosses
Ω = {0, 1, 2, 3}

Ω = {HHH,
HHT, HTH, THH,
HTT, THT, TTH,
TTT}
p(∗ ∗ ∗) = 1/8



Example: Toss a coin three times
No. of Heads in 3 tosses
Ω = {0, 1, 2, 3}

Ω = {HHH, ←− 3 Heads
HHT, HTH, THH, ←− 2 Heads
HTT, THT, TTH, ←− 1 Head
TTT} ←− 0 Heads
p(∗ ∗ ∗) = 1/8



Example: Toss a coin three times
No. of Heads in 3 tosses
Ω = {0, 1, 2, 3}

Ω = {HHH, ←− 3 Heads
HHT, HTH, THH, ←− 2 Heads
HTT, THT, TTH, ←− 1 Head
TTT} ←− 0 Heads
p(∗ ∗ ∗) = 1/8 p(0) = 1/8, p(1) = 3/8,

p(2) = 3/8, p(3) = 1/8



Example: Toss a coin three times
No. of Heads in 3 tosses
Ω = {0, 1, 2, 3}

Ω = {HHH, ←− 3 Heads
HHT, HTH, THH, ←− 2 Heads
HTT, THT, TTH, ←− 1 Head
TTT} ←− 0 Heads
p(∗ ∗ ∗) = 1/8 p(0) = 1/8, p(1) = 3/8,

p(2) = 3/8, p(3) = 1/8
Note we could have done the calculations in the
red part without even associating it with the blue
sample space etc.



Conditional probability Let X be the number
which appears on the throw of a dice.

Each of the six outcomes is equally likely, but
suppose I take a peek and tell you that X is an
even number.

Question: What is the probability that the
outcome belongs to {1, 2, 3}?



Given the information I conveyed, the six
outcomes are no longer equally likely.

Instead, the outcome is one of {2, 4, 6} – each
being equally likely.

So with the information you have, the probability
that the outcome belongs to {1, 2, 3} equals 1/3.



Consider an experiment with m equally likely
outcomes and let A and B be two events.

Given the information that B has happened,
what is the probability that A occurs?

This probability is called the conditional
probability of A given B

and written as P(A | B).



U

#A= k #B=

#A    B= j

l

Let #A = k, #B = l, #(A ∩ B) = j.
Given that B has happened, the new probability
assignment gives a probability 1/l to each of the
outcomes in B.



Out of these l outcomes of B,
#(A ∩ B) = j outcomes also belong to A.

Hence
P(A | B) = j/l.

Noting that P(A ∩ B) = j/m and P(B) = l/m, it
follows that

P(A | B) =
P(A ∩ B)

P(B)
.



In general when A, B are events such that
P(B) > 0, the conditional probability of A given
that B has occurred P(A | B) is defined by

P(A | B) =
P(A ∩ B)

P(B)

This leads to the Multiplicative law of probability

P(A ∩ B) = P(A | B)P(B)



This has a generalization to n events:

P(A1 ∩ A2 ∩ . . . ∩ An)

= P(An | A1, . . . , An−1)

×P(An−1 | A1, . . . , An−2)

× . . .×
×P(A2 | A1)P(A1)



The Law of Total Probability Let B1, . . . , Bk be a
partition of the sample space Ω

Ω

B
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The Law of Total Probability Let B1, . . . , Bk be a
partition of the sample space Ω and A an event

Ω

B
B

B

B

B

B

B1 2
3

4

5

6

7

A



Then
P(A) = P(A ∩ B1) + · · · + P(A ∩ Bk)

Also we know
P(A ∩ Bi) = P(A|Bi)P(Bi)

so we get the Law of Total Probability

P(A) = P(A|B1)P(B1) + · · · + P(A|Bk)P(Bk)



Example Suppose a bag has 6 one rupee coins,
exactly one of which is a Sholay coin, i.e. both
sides are HEAD. A coin is picked at random and
tossed 4 times, and each toss yielded a HEAD.
Two questions which may be asked here are

(i) what is the probability of the occurrence of
A = {all four tosses yielded HEADS}?
(ii) given that A occurred, what is the probability
that the coin picked was the Sholay coin?



The first question is easily answered by the laws
of total probability. Let
B1 = coin picked was a regular coin
B2 = coin picked was a Sholay coin
Then

P(A) = P(A | B1)P(B1) + P(A | B2)P(B2)

=

(

1

2

)4 5

6
+

1

6

=
21

96
=

7

32



For the second question we need to find

P(B2 | A)



For the second question we need to find

P(B2 | A) =
P(B2 ∩ A)

P(A)



For the second question we need to find

P(B2 | A) =
P(B2 ∩ A)

P(A)

=
P(A | B2)P(B2)

P(A)



For the second question we need to find

P(B2 | A) =
P(B2 ∩ A)

P(A)

=
P(A | B2)P(B2)

P(A)

=
1/6

7/32

=
16

21



The previous example is atypical of the situation
where we perform scientific experiments and
make observations. On the basis of the
observations we have to infer what was the
theoretical process involved in the experiment to
obtain the given observation. Occassionally we
may have some (though not complete)
information of the process, in which case we
can use this information to help in our inference.
In particular, in the example we had the prior
information that there was exactly one Sholay
coin among the six coins.



Suppose we have observed that A occurred.
Let B1, . . . , Bm be all possible scenarios under
which A may occur, i.e. B1, . . . , Bm is a partition
of the sample space. To quantify our suspicion
that Bi was the cause for the occurrence of A,
we would like to obtain P(Bi | A).
Bayes’ formula or Bayes’ theorem is the
prescription to obtain this quantity. The theorem
is very easy to establish and is the basis of
Bayesian Inference.



Bayes’ Theorem: If B1, B2, . . . , Bm is a partition
of the sample space, then

P(Bi | A) =
P(A | Bi)P(Bi)

P(A)

=
P(A | Bi)P(Bi)
∑m

j=1 P(A | Bj)P(Bj)



Suppose that A, B are events such that

P(A | B) = P(A)P(B).

Then we get
P(A | B) = P(A).

i.e. the knowledge that B has occurred has not
altered the probability of A.
In this case, A and B are said to be independent
events.



Let X, Y, Z be random variables each taking
finitely many values. Then X, Y, Z are said to be
independent if

P(X = i, Y = j, Z = k) = P(X = i)P(Y = j)P(Z = k)

for all possible values i, j, k of X, Y, Z
respectively.
This can be generalized to finitely many random
variables.



Expectation of a random variable Let X be a
random variable taking values x1, x2 . . . , xn.
The expected value µ of X (also called the
mean of X) denoted by E(X) is defined by

µ = E(X) =
n
∑

i=1

xiP(X = xi).

The variance of a random variable is defined by

σ2 = Var(X) = E{(X − µ)2}.



Example Let X be a random variable
taking values
+1 or −1
with prob. 1/2 each
µ = E(X) = 0
and
σ2 = Var(X) = 1



Example Let X be a random variable
taking values taking values
+1 or −1 +10 or −10
with prob. 1/2 each with prob. 1/2 each
µ = E(X) = 0 µ = E(X) = 0
and and
σ2 = Var(X) = 1 σ2 = Var(X) = 100



Example Let X be a random variable
taking values taking values
+1 or −1 +10 or −10
with prob. 1/2 each with prob. 1/2 each
µ = E(X) = 0 µ = E(X) = 0
and and
σ2 = Var(X) = 1 σ2 = Var(X) = 100

The variance of a random variable describes the
spread of the values taken by the random
variable.



Notation We will denote by CAPITAL letters the
random variables, and by small letters the
values taken by the random variables.
Thus X, Y, Z will stand for random variables,
while x, y, z will stand for the values attained by
the random variables X, Y, Z respectively.



Examples of random variables Consider n
independent trials where the probability of
success in each trial is p and let X denote the
total number of successes, then

P(X = k) =

(

n
k

)

pk(1− p)n−k

for k = 0, 1, . . . n, 0≤ p ≤ 1. This is known as
Binomial distribution, written as X ∼ B(n, p).
E(X) = np and Var(X) = np(1− p).



Consider a random variable X such that

P(X = k) = λk

k! e−λ

for k = 0, 1, 2, . . .. and λ > 0. This is known as
Poisson distribution. Here
E(X) = λ and Var(X) = λ.



If X has Binomial distribution B(n, p) with large n
and small p, then X can be approximated by a
Poisson random variable Y with parameter
λ = np, i.e.

P(X ≤ a) ≈ P(Y ≤ a)



In order to consider random variables that may
take any real number or any number in an
interval as its value, we need to extend our
notion of sample space and events. One
difficulty is that we can no longer define
probabilites for all subsets of the sample space.
We will only note here that the class of events -
namely the sets for which the probabilities are
defined is large enough.



We also need to add an axiom called Countable
additivity axiom: If A1, A2, . . . , Ak, . . . are
pairwise mutually exclusive events then

P
(

∪∞i=1Ai
)

=
∞
∑

i=1

P(Ai).

A real valued function X on a sample space Ω is
said to be a random variable if for all real
numbers a, the set {ω : X(ω) ≤ a} is an event.



For a random variable X, the function F defined
by

F(x) = P(X ≤ x)

is called its distribution function. If there exists a
function f such that

F(x) =

∫ x

−∞
f(t)dt

then f is called the density of X.



Examples of densities:

f(x) =

{

λ exp(−λx) if x ≥ 0
0 if x < 0

This is called exponential density.

f(x) =
1

√
2πσ

exp
{

−(x− µ)2

2σ2

}

This is the Normal density.



Normal density func-

tion



Normal distribution func-

tion



A very common density funtion encountered in
astronomy is the globular cluster luminosity
function GCLF.
A globular cluster (GC) is a collection of
104-106 ancient stars concentrated into a tight
spherical structure structurally distinct from the
field population of stars.



The distribution of GC luminosities (i.e. the
collective brightness of all of its stars) is known
as the globular cluster luminosity function
(GCLF).
The shape of this function is said to be
lognormal i.e.

f(x) =
1

xσ
√

2π
exp
{

−(ln(x)− µ)2

2σ2

}

for x > 0.



Lognormal density func-

tion



The distribution function of this random variable
is difficult to compute explicitly.

It may be shown that if X is a normal random
variable, then eX has a log-normal distribution.



Lognormal distribution func-

tion



For a random variable X with density f , the
expected value of X, where g is a function is
defined by

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx.



For a random variable X with Normal density

f(x) =
1

√
2πσ

exp
{

−(x− µ)2

2σ2

}

E(X) = µ

Var(X) = E[(X − µ)2] = σ2.

We write X ∼ N(µ, σ2).



If X ∼ N(0, 1) (i.e. the mean is 0 and variance is
1) then we call X a standard normal random
variable and denote its density function and
distribution function as

φ(z) =
1
√

2π
e(−z2/2)

Φ(x) =

∫ x

−∞

1
√

2π
e(−z2/2)dz

The values of Φ(x) and those of F(x) for other
standard distributions are available in various
computer spreadsheets.



For a random variable Y with lognormal density

f(x) =
1

xσ
√

2π
exp
{

−
(ln(x)− µ)2

2σ2

}

for x > 0.

E(X) = eµ+(σ2/2)

Var(X) = E[(X − µ)2] = (eσ2 − 1)e2µ+σ2
.



When an experiment is conducted many times,
e.g. a coin is tossed a hundred times, we are
generating a sequence of random variables.
Such a sequence is called a sequence of i.i.d.
(independent identically distributed) random
variables.
Suppose we gamble on the toss of a coin as
follows – if HEAD appears then you give me 1
Rupee and if TAIL appears then you give me −1
Rupee.



So if we play n round of this game we have
generated i.i.d. sequence of random variables
X1, . . . , Xn where each Xi satisfies

Xi =

{

+1 with prob. 1/2
−1 with prob. 1/2

Now
Sn = X1 + X2 + · · ·+ Xn

represents my gain after playing n rounds of
this game.



Suppose we play the game n times and observe
my gains/losses

OBSERVATION CHANCE
S10 ≤ −2
i.e. I lost at least 6 out of 10

S100≤ −20
i.e. I lost at least 60 out of 100

S1000≤ −200
i.e. I lost at least 600 out of 1000



Suppose we play the game n times and observe
my gains/losses

OBSERVATION CHANCE
S10 ≤ −2
i.e. I lost at least 6 out of 10 moderate

S100≤ −20
i.e. I lost at least 60 out of 100 unlikely

S1000≤ −200
i.e. I lost at least 600 out of 1000 impossible



Suppose we play the game n times and observe
my gains/losses

Probability
OBSERVATION CHANCE
S10 ≤ −2 0.38
i.e. I lost at least 6 out of 10 moderate

S100≤ −20 0.03
i.e. I lost at least 60 out of 100 unlikely

S1000≤ −200 1.36−10

i.e. I lost at least 600 out of 1000 impossible



OBSERVATION Probability
|S10| ≤ 1 0.25

|S100| ≤ 8 0.56

|S1000| ≤ 40 0.8



OBSERVATION PROPORTION Probability
|S10| ≤ 1 |S10|

10 ≤ 0.1 0.25

|S100| ≤ 8 |S100|
100 ≤ 0.08 0.56

|S1000| ≤ 40 |S1000|
1000 ≤ 0.04 0.8



Law of Large Numbers
Suppose X1, X2, . . . is a sequence of i.i.d.
random variables with E(| X1 |) <∞. Then

X̄n =
n
∑

i=1

Xi

n

converges to µ = E(X1): i.e. for all ǫ > 0

P(| X̄n − µ |> ǫ) −→ 0.



Event Probability Normal√
1000S1000

1000 ≤ 0 0.5126 Φ(0) = 0.5

√
1000S1000

1000 ≤ 1 0.85 Φ(1) = 0.84

√
1000|S1000|

1000 ≤ 1.64 0.95 Φ(1.64) = 0.95

√
1000|S1000|

1000 ≤ 1.96 0.977 Φ(1.96) = 0.975



For the sequence of i.i.d. random variables
X1, X2, . . . with

Xi =

{

+1 with prob. 1/2
−1 with prob. 1/2

we have for X̄n = Sn/n,

P
{√

n
(X̄n − µ

σ

)

≤ x
}

−→ Φ(x)



Central Limit Theorem Suppose X1, X2, . . . is a
sequence of i.i.d. random variables with
E(| X1 |2) <∞. Let µ = E(X1) and
σ2 = E[(X1− µ)2]. Let

X̄n =

n
∑

i=1

Xi

n
.

Then

P
{√

n
(X̄n − µ

σ

)

≤ x} −→ Φ(x)



X ∼ Binomial(n, p), n large. Then

P(X ≤ a)

can be approximated by

Φ
(√

n
( a−np√

p(1−p)

)

)


