
USING SIMULATION TO UNDERSTAND PROBABILITY
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Probability theory studies the behaviour of data generated from a completely known statistical model.
Inference, on the other hand, starts with data and tries to infer plausible statistical models that could have
generated that data. If you have data you want to “analyze”, inference is probably what you want to do.
However, to properly appreciate techniques used for inference, one must understand the associated
probability theory. This is especially important for asymptotic (large-sample) statements such as the
Central Limit Theorem. Modern statistical software come with a variety of tools to simulate random
numbers, and these can be effectively used to understand abstract probabilistic statements.

Many quantitative statements made in inference say things about what would happen if “the exeriment was
repeated a large number of times”. One cannot of course do this in practice, but a random experiment can
be repeated an arbitrary number of times on a computer. An important paradigm in inference (specifically
hypothesis testing) is the following:

• Assume a parametric model for your data (with unknown parameters).
• Obtain a test statistic whose distribution does not depend on the unknown parameter under the

null model.
• Determine how “probable” the observed value of the test statistic is under this known probability

model.
• If the observed value was very unlikely, then the null model is in doubt.

Statisticians spend a lot of time trying to calculate exact theoretical distributions for various test statistics
in various setups. But again, the ability to generate random numbers using modern software means you
can explore the behaviour of test statistics even if you cannot compute the exact distribution. More
importantly, you can explore what happens when your model assumptions (such as normality) are not
exactly satisfied.

The Central Limit Theorem. If X1, X2, . . . , Xn are independent random variables from a common
distribution, then the central limit theorem states that under certain conditions (e.g., finite mean µ and

variance σ2 of the Xi-s), the distribution of the standardized sample mean X̄−µ
σ/
√
n

“converges” to the

standard normal distribution. More precisely,

(1) lim
n→∞

P

(
X̄ − µ
σ/
√
n
≤ u

)
= P (Z ≤ u)

where Z is a standard Normal random variable.

This result (which is especially impressive because of its generality) is perfectly satisfactory for probabilists,
but practitioners would naturally ask “how large does n need to be for me to use this approximation?”
Unfortunately, there is no general answer to that question; it depends on the context, i.e., the distribution
of the Xi-s. Fortunately, it is easy enough to study the question for any specific distribution using
simulation.

Example: the uniform distribution. Suppose our X1, X2, . . . , Xn are independent U(0, 1) random
variables. Then clearly µ = 1

2 , and

σ2 = E(X2
1 )− µ2 =

∫ ∞
0

x2dx−
(

1

2

)2

=
1
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=
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Let the standardized sample mean (of n observations) be

Zn =
X̄ − 1

2√
1/12
n

We are then interested in knowing how large n needs to be before we can consider the Normal
approximation reasonable.

In real life, we will usually have only one realization of the random variables X1, X2, . . . , Xn. We can
mimic this situation in R with

> n <- 10

> x <- runif(n)

We can compute the corresponding Zn as

> (mean(x) - 0.5) / sqrt((1/12) / n)

[1] -1.643419

As this is not real life, we can repeat this pretend-experiment as many times as we want. There are several
ways to do so (e.g., a for loop), but a useful R function for the task is replicate(), which will execute a
statement multiple times, providing the results in a handy form.

> zrep <- replicate(5000, (mean(runif(n)) - 0.5) / sqrt((1/12) / n))

So now we have 5000 realizations of the random variable Zn, with the option of generating even more.
Note that we cannot easily figure out the probability density function or distribution function of Zn in
closed analytic form. However, with the power to generate an arbitrary number of observations from this
distribution, we can answer questions like

• What does the density of Zn look like?
• What does the distribution function of Zn look like?
• How close is the distribution of Zn to N(0, 1)?

These questions can be answered by

> library(lattice)

> densityplot(~zrep, plot.points = FALSE, xlab = NULL)
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> library(latticeExtra)

> ecdfplot(~zrep)
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> ks.test(zrep, pnorm)

One-sample Kolmogorov-Smirnov test

data: zrep

D = 0.0106, p-value = 0.6282

alternative hypothesis: two-sided

The kernel density estimate and empirical CDF will of course still be random, but will approximate the
true density and CDF better and better with more replications.

Notice that the Kolmogorov-Smirnoff test statistic gives you an approximation of

max
u∈R

∣∣∣∣P (X̄ − µσ/
√
n
≤ u

)
− P (Z ≤ u)

∣∣∣∣
which is the maximum error you can make if you use the N(0, 1) distribution instead of the true
distribution of Zn (in the sense of the central limit theorem (1) above). This is an approximation in the
sense that you are actually computing

max
u∈R

∣∣∣∣P̂n(X̄ − µσ/
√
n
≤ u

)
− P (Z ≤ u)

∣∣∣∣
where P̂n is the probability distribution corresponding to the empirical CDF F̂n. It is possible to show that
they are the same asymptotically. You can already see the pointwise convergence (for any fixed u) using

the Weak Law of Large Numbers: notice that F̂n(u) is nothing but the proportion of successes in n tosses
of a coin with probability of head p = P (Z ≤ u).

The Q-Q plot. Having said all that, the simplest and usually the most effective way to judge the
normality of a distribution is to plot the Normal Q-Q plot of data from that distribution.

> zrep2 <- replicate(1000, (mean(runif(2)) - 0.5) / sqrt((1/12) / 2))

> zrep9 <- replicate(1000, (mean(runif(9)) - 0.5) / sqrt((1/12) / 9))

> zrep25 <- replicate(1000, (mean(runif(25)) - 0.5) / sqrt((1/12) / 25))
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> zrep.df <- make.groups(z2 = zrep2, z9 = zrep9, z25 = zrep25)

> qqmath(~data | which, zrep.df, distribution = qnorm, type = c("g", "p"))

qnorm
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Departure from normality is suggested by systematic deviations from a straight line in the Q-Q plot. The
reason Q-Q plots are so effective is that the human eye finds it easier to detect departure from straight
lines than from curves.

Other distributions. We can repeat this whole procedure for distributions other than U(0, 1). We do not
actually need to compute and standardize by the mean and standard deviation to use Q-Q plots, as a
Normal Q-Q plot will still be linear as long the data follows some Normal distribution (µ and σ will change
the intercept and slope of the line1). Here are some examples.

> ## A more flexible sample mean generator

>

> meanGenerator <- function(replications = 1000, n, rdist = runif, ...)

{

rsampleMean <- function()

{

mean(rdist(n, ...)) ## ... can supply extra parameters

}

replicate(replications, rsampleMean())

}

> zt_1_100 <- meanGenerator(1000, n = 100, rt, df = 1) ## Cauchy

> zt_2_100 <- meanGenerator(1000, n = 100, rt, df = 2)

> zt_3_50 <- meanGenerator(1000, n = 50, rt, df = 3)

> zt_30_10 <- meanGenerator(1000, n = 10, rt, df = 30)

> zlognorm_20 <- meanGenerator(1000, n = 20, rlnorm)

> zlognorm_100 <- meanGenerator(1000, n = 100, rlnorm)

1Note that Q-Q plots can be drawn with non-Normal reference distributions as well, but this location-scale invariance

property does not hold in general.
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> qqmath(~data | which,

data = make.groups(zt_1_100, zt_2_100, zt_3_50, zt_30_10,

zlognorm_20, zlognorm_100),

scales = list(y = "free"), as.table = TRUE, type = c("g", "p"))
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Note the bad behaviour of t1 (which does not in fact satisfy the conditions required by the central limit
theorem because its mean does not exist), t2 (which has a finite mean but infinite variance, also not
satisfying the conditions of the CLT), and the log-Normal distribution (which is skewed).

Q-Q plots for small samples

One should not come away with the impression that Q-Q plots (or any other graphical method or test) can
be used to easily judge Normality. Such judgments are very difficult to make for small samples. Here are
some examples of Q-Q plots and kernel density plots for small Normal samples.
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> x <- rnorm(15 * 4)

> g <- gl(4, 15) ## An artificial grouping variable

> qqmath(~x | g)
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> densityplot(~x | g)

x

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

1

−4 −2 0 2 4

2

−4 −2 0 2 4

3

−4 −2 0 2 4

4

You might think that using the Kolmogorov-Smirnoff test is the solution, but that will have the problem of
low power in small samples; that is, you will usually not reject the null hypothesis of Normality even when
it is not true.

Detecting bimodality. Q-Q plots are also not very good at detecting bimodality; density plots are
usually more effective for that.

> qqmath(~ eruptions + waiting, faithful, outer = TRUE, scales = "free", ylab = NULL)
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> densityplot(~ eruptions + waiting, faithful, outer = TRUE, scales = "free", xlab = NULL)
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Q-Q plots with non-normal distributions

Let us revisit the example where X1, X2, . . . , Xn are independent U(0, 1) random variables. But instead of
the sample mean, let us look at the t-statistic for testing H0 : µ = 0.5.

> n <- 5

> trep <-

replicate(5000,

{

x <- runif(n)

s <- sd(x)

t <- sqrt(n) * (mean(x) - 0.5) / s

})

> qqmath(~trep, distribution = function(p) qt(p, df = n - 1),

type = c("p", "g"))
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function(p) qt(p, df = n − 1)
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Is this a good fit?

Exercise 1. Check what the Q-Q plot would have been like in the “perfect” case, by repeating the
experiment using any Normal distribution for your sample, rather than the uniform used here.

Exercise 2. Repeat the experiment above using different sample sizes n and different non-normal
distributions (other than the uniform) to explore whether the t-test gives good results when the underlying
distribution is not Normal. This is the study of robustness of the t-test against departures from Normality.

A physics problem

The following assignment problem has been posed to you by Dr. Sabyasachi Chatterjee. Consider a gas
column of length L, with N0 hydrogen atoms per unit volume and at equilibrium at temperature T ,
moving with a net drift velocity v̄, such that the number of atoms per unit volume having the velocity in
the x-direction lying between v and v + dv is given by

N(v) dv =
N0√
2πσ2

exp

{
− (v − v̄)2

2σ2

}
dv
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If a photon of frequency ω traveling in the x-direction is incident on this system, an atom ‘sees’ the
frequency to be doppler-shifted as

ωobs = ω(1 + v/c)

and with ω0 as the natural frequency of absorption, the atom can absorb the photon if ωobs = ω0, so that
the observed absorption spectrum looks like

A(ω) dω = L α

[∫ +∞

−∞
δ(ω(1 +

v

c
)− ω0)N(v)dv

]
dω

α being an absorption cross-section. Alternatively, using ω = 2πc/λ, where λ is the wavelength of light, we
have the absorption spectrum as

A(λ) dλ ≈ LN0α√
2π|∆λ|2

exp

[
− (λ− λ̄)2

2|∆λ|2

]
dλ

where λ̄ = λ0(1 + v̄/c), σ2 = kBT/M where M is the mass of the hydrogen atom, λ0 = 2πc/ω0, and
|∆λ|2 = λ2

0 σ
2/c2.

Generate ‘fake data’ for T = 6000K, v̄ = 5km/sec, λ0 = 1216
◦
A (Lyman-α), 1026

◦
A (Lyman-β). Check if

the data can be fitted to

(1) v̄ = 3.5km/sec, T = 7000K
(2) v̄ = 5km/sec, T = 5000K

The situation can be made more complex if we have two gas clouds in our line of sight with column lengths
L1 and L2, densities N1 and N2, and temperatures T1 and T2. The absorption coefficients must then read

A(λ) dλ = A1(λ) dλ+A2(λ) dλ

with

A1(λ) = αN1L1√
2π|∆λ1|2

exp
[
− (λ−λ̄1)2

2|∆λ1|2

]
A2(λ) = αN2L2√

2π|∆λ2|2
exp

[
− (λ−λ̄2)2

2|∆λ2|2

]
|∆λ1|2 = λ2

0σ
2
1/c

2 , |∆λ2|2 = λ2
0σ

2
2/c

2

σ2
1 = kBT1/M , σ2

2 = kBT2/M

kB = 1.38045× 10−16 erg/K

M = 1.6726× 10−24 erg/K

c = 3.0× 1010 cm/sec

1
◦
A= 10−8 cm

In the last case, depending upon the choice on N1, N2, v̄1, v̄2, T1, T2 it may not be possible to distinguish
whether there is one gas column or two.
,
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