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1 Introduction

The theory and methodology of Statistics is mostly concerned with inductive
inference—inference from the particular to the general. We have some data
and we wish to make statements—inferences—about one or more unknown
features of the physical system which gave rise to these data. Although this
sounds vague, this is the nature of the widely varied inference problems that
arise in general.

A simple example of a situation asking for statistical inference is the following;:
An opinion poll produces data consisting of ‘Yes’ or ‘No’ opinion of a sample
of people from a certain population in response to a question, say whether
the government should resign in view of a recent corruption exposé. The
system giving rise to these data consists of a population of individuals, a
mechanism for selecting a sample from that population, and a mechanism
which produces a ‘Yes’ or ‘No’ response from each individual in the sample.
The answering mechanism for instance, may assume that the respondent is
truthful and his answer reflects his true opinion. The sampling mechanism is
a known probability scheme, say a simple random sampling scheme without
replacement. The unknown feature of the system is the proportion, 6, of
individuals in the population who hold the ‘Yes’ opinion. The object of
statistical inference then is to use the observed responses in the sample to
make statements about 0. Evidently, exact statements cannot be made about
the value of 6, and any assessment of the value of 6 is subject to probabilistic
or stochastic behaviour. It is the object of statistical inference to nonetheless
make useful statements about € within this limiting framework. And here
there are two rather different paradigms.



2 Classical versus Bayesian Inference

Example 1. We have seen elsewhere (e.g. Resonance, Vol. 1, No. 5, pp. 49-
58) that if we define X to be the number of ‘Yes’ responses in a sample of n
randomly chosen individuals, then X can be modelled as a binomial random
variable with the probabilities

P(X=k|8) = (Z)eku_e)"—k, k=0,1,...,n. (1)

The notation P(X = k | 0) is employed here to make it explicit that the
above probability distribution is the one that we get when the proportion (of
interest) is fixed at (or conditioned on) #. In Bayesian inference, the param-
eters are also regarded as random variables, and thus the above probability
is regarded as conditional probability when the random variable © takes the
value 6.

The purpose of statistical analysis is fundamentally an inversion, aiming at
retrieving the ‘causes’ (parameters of the probabilistic data generating mech-
anism) from the ‘effects’ (observations). Because of this perspective, at the
time of Bayes and Laplace (late eighteenth century), Statistics was known as
‘Inverse Probability’. When observing a random phenomenon driven by a pa-
rameter 0, statistical methods allow us to deduce from these observations an
inference about 6, while probabilistic modelling of the random phenomenon
characterizes the behaviour of the future (or unseen) observations conditional
on 6. This ‘inverting’ aspect of Statistics is clear in the notion of the likels-
hood function: Formally, it is just the sample density rewritten as a function
of # for the observed value of sample data z:

(6lr) = £(216).

The important thing to note is that given z, it can be interpreted as a function
showing the likelihood of different values of the parameter 8. One of the
most popular statistical techniques for estimating parameters, then naturally
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appears as that of maximizing this likelihood function as a function of 6 for
the observed sample data . The interpretation of such an estimate is that
it is the parameter of that model which is most likely to have produced the
sample data z.

In the example above, the likelihood function of the proportion € is simply

(f]z) = ( )em —g)ne, 2)

with log ¢(f|z) = constant + z log 8+ (n — z) log(1 — 6) so that the maximum
likelihood estimate of #, which maximizes £ or log/ with respect to 6 is the
familiar estimate § = z/n, the sample proportion.

n
Zz

Now we have solved one problem. However, we are faced with another ques-
tion. We have only an estimate of the true quantity, not the true quantity
itself. How precise is our estimate? What is the estimation error? Many
statisticians and users will also want interval estimates or confidence intervals
for 6. These issues cannot be resolved by looking at the likelihood function.
One possible approach is to consider the sampling distribution of the esti-
mate: Imagine that we sample again and again and obtain a whole collection
of these estimated 6 values; from these we can hope to construct a probability
histogram. In our example, this can be achieved theoretically by utilizing the
normal approximation to the binomial distribution (see Resonance, Vol. 2,

No. 6, pp. 15-24) to claim that 6 +2,/8(1 — §) /n is an approximate 95% con-
fidence interval for large values of the sample size n. What does this mean?

Simply that, if we sample again and again a very large number of times, then
in about 19 cases out of 20, this (random) interval will contain the actual
unknown value of 8. However, if we pick a particular sample and construct

the interval § + 2\/9(1 — é)/n, we don’t know what to say about this particu-
lar interval. This illustrates the main difference between the frequentist and
the Bayesian approach to statistics. The frequentist approach, as indicated
above in the construction of a confidence set, relies on the long-run behaviour
of a statistical procedure, whereas the Bayesian approach insists on using the
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likelihood function of the parameter in question for the actual observed data
for inference. This is the idea of conditioning on the observed data employed
by the Bayesian approach as explained below.

Example 2. A blood test is to be conducted to help indicate whether or not
a person has a particular disease. The result of the test is either ‘positive’
(x = 1) or ‘negative’ (z = 0). Let 6; denote ‘disease is present’ and 6, ‘disease
not present’. Suppose the probability distribution of X under the different
0’s is:

r=0lz=1
6;| 0.2 0.8
6, 0.7 0.3

Now, suppose that the result comes out to be ‘positive’ (z = 1). What should
the doctor who suggested the blood test conclude? The probabilities given
above do not make the blood test a foolproof method either way and whatever
course of action the doctor takes is subject to error. Now, can he improve
the assessment of these probabilities by using additional information on the
disease prevalence? Suppose that in the community concerned, this disease
is present in 5% of the cases. i.e., P( = 6;) = 0.05. These probabilities of
0.05 and 0.95 for 6; and 65 respectively are called ‘prior probabilities’. Now
one can proceed as follows: For 7 =1, 2,

P(O = Gz | X = (L’) = P(G:é;g(;;}n:ci]l;)sz)

P(XZ.’L'|H=6',’)P(9=01') 3

From (3), it follows easily that
PO=6,|X=1)=0123, and PO=6|X=1)=087T.

These are called ‘posterior probabilities’. This means that a positive blood
test indicates only a 12.3% chance of the disease being present in a random
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member of this community. Notice that if the prior probability of 8 =
0.35, then the posterior probability for ‘disease present’ increases to 0.577.
Although this approach does not help diagnose a particular case with any
more accuracy, it results in minimizing the overall probability of misdiagnosis
when applied to members of this community. If misdiagnosis of ‘disease
present’ and ‘disease absent’ are not equally serious, then these differences (if
evaluated) can be used to further modify this diagnostic strategy. Anyway, in
a situation like this, the doctor would most probably want further diagnostic
measures!

The formula (3) which shows how to convert (‘invert’) the given conditional
probabilities, P(X = z | 6) into the conditional probabilities of interest,
P(6 | X = z) is an instance of the Bayes Theorem, and hence the Theory of
Inverse Probability is known these days as Bayesian inference.

It is now clear what the basic ingredients of Bayesian inference are. In ad-
dition to the likelihood function (of the unknown parameters) which usually
comes out of the model for the data, we also need a (prior) probability dis-
tribution 7(f) on the unknown parameters. Once we have both of these,
the Bayes theorem can readily provide us a post-data (post-experimental or
simply posterior) distribution of the unknown parameters conditional on the
observed sample data. What this means, in particular, is that we actually end
up having a probability model for the unknown parameters for the purpose of
inference and future predictions. Often, a suitable way of summarizing this
probability model is to be worked out. Indeed, specification of the prior prob-
ability distribution is hardly an easy exercise as is evident from the situation
of Example 2.

Example 1. continued. Let us go back to our Example 1. Suppose that
we have no special information available on the unknown proportion 6 (apart
from what we hope to get from sample data z). Then we may assume that 6 is
uniformly distributed on the interval (0, 1). i.e., the prior density is 7(0) = 1,
for 0 < @ < 1. This is generally the way (prior) ‘ignorance’ is specified in a



Bayesian approach. Bayesians even use such uniform priors over an infinite
range, calling them ‘improper priors’. Oftentimes, Bayesian inference from
such a prior coincides with classical inference; quite frequently, Bayesians use
this phenomenon to justify their approach. Maybe then classical inference is
the same as ‘ignorant Bayesian inference’! In the Example then we readily
see that the posterior density of 8 given z is given by

(0)f(z|0)
Jm(u) f(z|u) du
(n+1)!

= ———0*(1-0)""" 0 < 1.
z!(n —z)! ( 7 0<b<

(0]z)

Notice the similarity and difference between this and the likelihood (2). The
likelihood is a function of # and is obtained from the probability distribution
of the observed discrete random variable X. This posterior density is that of
the parameter 6 looked upon as a continuous random variable. However, as
functions of 6, they are (essentially) the same and maximizing the posterior
probability will give the same estimate as the maximum likelihood estimate.
But this is only because in using the uniform prior, we have not really put
in any information on #. Notice that this is just the density of the Beta
distribution with parameters £ + 1 and n — z + 1. (Note that the probability
density function of the Beta distribution with parameters a and b is given by
fly) =T(a+v)/{T()T(y)}y* 1 —y)7L for 0 < y < 1.) As a matter of
fact, the uniform prior we used is a special case of the Beta distribution with
parameters 1 and 1. If we had some knowledge of 6 which can be summa-
rized in the form of a Beta prior distribution with parameters o and 7, it is
easily seen that the posterior will be also Beta with parameters x + « and
n—x+. Choices of & and v lead to a wide spectrum of distributions helping
to summarize prior knowledge of #. Such priors which with the likelihood re-
sult in posteriors from the same ‘family’ are called ‘natural conjugate priors’.
Before modern-day computational facilities were developed, Bayesians used
to formulate their priors in this fashion in order to make the mathematics
and computations tractable. With modern developments in statistical com-
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putation techniques and with the availability of more powerful computers,
this situation has changed and Bayesians dare to formulate more realistic
priors. Most often these prior densities do not have a matching form with
the likelihood function. Then, the posterior density will not have a standard
form either, and so posterior measures of centre and spread of # can be very
difficult to compute. Recently, a lot of techniques have been developed to
facilitate these computations which go by the name of Bayesian statistical
computing. Basics of these were touched upon in the series on Statistical
Computing by S Kunte in Resonance previously (Vol. 4, No. 10 and Vol. 5,
No. 4). Some of the more advanced tools will be discussed in subsequent
articles.

In this Example, the uncertainty in # can now be described in terms of an
actual probability distribution concentrated around the maximum likelihood
estimate § = /n. However, the interpretation of 6 as an estimate of 6 is quite
different now. It is the most probable value of the unknown parameter 6 con-
ditional on the sample data x; it is called the ‘maximum a posteriori estimate’
often abbreviated as ‘MAP estimate’, a Bayesian analogue of the Maximum
Likelihood Estimate (MLE). Indeed if the prior is a Beta distribution with
parameters o and v, the MAP estimate will be § = (z+a—1)/(n+a+y—2),
different from the MLE unless a = v = 1. This is a convex combination of
the information in the sample and prior information, the weights depending
upon the sample size and the strength of the prior information as measured
by the values of o and ~. Further, since we also have a probability distri-
bution to quantify our (post-experimental) uncertainty in 6, a measure of
estimation error can be taken to be the standard deviation of this posterior
distribution. In fact, we can say much more. For any interval around 6 we
can compute the (posterior) probability of it containing the true parameter
6. (Note, however, that this computation will involve incomplete Beta In-
tegrals which have to be done numerically.) The final conclusion is that all
these inferences are conditional on the given data. Certainly, this makes more
sense as a method of inference from the observed sample data. An important



point to note at this time is that Bayesian inference relies on the conditional
probability language to revise one’s knowledge. In the above example, prior
to the collection of sample data one had some (vague, perhaps) information
on f. Then came the sample data. Combining the model density of this data
with the prior density one gets the posterior density, the conditional density
of 8 given the data. From now on until further data is available, this posterior
distribution of € is the only relevant information as far as € is concerned.

3 Penalized Likelihood?

To better understand how the Bayesian approach manipulates the likelihood
function we extend Example 1 as follows.

Example 3. Suppose that k£ independent random variables y1, s, ...,y
are observed, where y; has the Binomial(n;, p;) probability distribution,
1 <14 < k. y; may be the number of laboratory animals cured of an ail-
ment in an experiment involving n; such animals. It is certainly possible to
make inferences on each p; separately based on the observed y; (as discussed
previously). This, however, is not really useful if we want to predict the re-
sults of a similar experiment in future. Suppose that the p; are related to
a covariate or an explanatory variable, such as dosage level in a clinical ex-
periment. Then the natural approach is what is called regression: exploring
and presenting the relationship between design (explanatory) variables and
response variables, and (if needed) predictions of response at desired levels
of the explanatory variables. Let ¢; be the value of the covariate which cor-
responds to p;, © = 1,2,..., k. Linking of p; and ¢; is made through a link
function H: p; = H(a + St;). H, here, is a known cumulative distribution
function (c.d.f.) and « and B are two unknown parameters. (If H is an in-
vertible function, this is precisely H!(p;) = o+ 3t;.) If the standard normal
c.d.f. is used for H, the model is called the probit model, and if the logistic
c.d.f. (ie, H(z) = e #/(1+ e%)) is used, it is called the logit model. The



likelihood function for the unknown parameters, o and f, is then given by

k ,

11 (nz) H(a+ Bt;)% (1 — H(a+ Bt;))" Y.

i=1 \Yi

Clearly, this function is largely intractable. For the given data, one can
still numerically compute the maximum likelihood estimates. The Bayesian
approach requires a prior distribution with density 7(«, 8), when combined
with the likelihood function above yields the following posterior distribution:

m(a, ) iy H(a + Bti)% (1 — H(a + Bti)" ™
m(a,b) 1%, H(a + bt;)% (1 — H(a + bt;))" Y dadb’

7(a, Bldata) =

How different is this from the likelihood function? In particular, how different
is the MAP estimate of (« 5) from its MLE? To illustrate this we use the logit
model, so that p; = e~ (a5t /{14 e~ (@*+Pt)} "and hence —log(p;/(1 — pi)) =
a + Pt;. We will also employ a large sample approximation (i.e., that the
n; are large enough for a satisfactory Gaussian approximation of the Bi-
nomial model. Also, for convenience we shall employ the standard nota-
tion of N(u,0?) for a normal or Gaussian distribution with mean p and
variance 02.) Consequently, if we let p; = y;/n;, then (approximately),
these p; are independent N (p;, p;(1 — p;)/n;) random variates. Now let 6; =
—log(pi/(1 — p;)) and 6; = —log(p;/(1 — p)). It can be shown that, ap-
proximately, (8; — 6;)y/nipi(1 — p;) are independent N(0,1) random variates.
Then, (again approximately), the likelihood function for (¢, ) is

l(a, B|data) = exp (—% élwz(@Z —(a+ ﬁti))2> , (4)

where w; = n;p;(1—p;) are known weights. Now suppose that a priori « and
are independent N (ag, 72) and N (b, 72) respectively. Then the approximate
posterior density is

7(a, B|data) o exp (—— {ij (0 — (a+ Bt))2 + (2 ;aa°)2 + (B ;b°)2}> .
()




Now let us note that finding the MLE and MAP estimates of («, 3) is equiv-
alent to maximizing the logarithm of the likelihood function (4) and the
logarithm of the posterior density (5) respectively. This in turn is equivalent
to minimizing

k A
to find the MLE and, minimizing
B - —b
PR(@,8) = Y uilhi— (a+ 807 + (2P + (7P ()

to find the MAP estimate. From (6), it is clear that MLE of («, ) is the
weighted least squares estimate of these regression coefficients. On the other
hand, the MAP estimate in this case is different. PR(«, ) needs to balance
the weighted residual sum of squares R(a, ) with (weighted) departures of
a and B from their prior means ag and by. This will force it to penalize any
candidates for the estimates which are far away from the prior means of the
regression coefficients. Therefore, broadly speaking, the Bayesian approach to
inference is a penalized likelihood method, where the penalty is for departing
away from the prior inputs. The prior variances, 72 and 7 indicate how much
weight is to be given to these departures from the means in the penalty term.

4 Bayesian Computation

As we mentioned earlier, Bayesians increasingly use rather more realistic and
hence more complicated priors, leading to difficult computational problems,
which seem to be increasingly solvable thanks to developments in statistical
computing techniques and in the availability of more computing power. We

now introduce an example of this kind, due to Casella and George given in
Arnold (1993).
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Example 4. Suppose we are studying the distribution of the number of
defectives X in the daily production of a product. Let us model (X | Y, 0) ~
Bin(Y,0), where Y a day’s production is a random variable with a Poisson
distribution with known mean A, i.e., Y ~ Poi(\) and 6 is the probability
that a product is defective. In a Bayesian formulation, let (0 | ¥ = y) ~
Beta(a, ), with known « and v. The solution to the Bayesian estimation
problem would require the conditional distribution (Y, 6 | X) which is

P(z,y,0)
P(X =z)

The numerator is easy to work out as P(X = z | y,0) x P(y)P(0), but the
denominator, the marginal distribution of X is complicated. It is seen to be

IE!IB(OZ, 7) yg() (y - il?)'ﬁ(w TaOYTY - .SU),

where [ is the complete Beta function. This sum is very difficult to work
out analytically and in contexts like these either numerical methods are used
if possible, or statistical simulation techniques are used. We discuss these
methods in a subsequent article.
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