1. Let $X_{1}, X_{2}, \ldots X_{n}$ be iid with density $f_{\theta}(x)$ given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(x-\theta)^{2}}{2}\right\},-\infty<x<\infty
$$

Find the maximum likelyhood estimator of θ.
2. Let $X_{1}, X_{2}, \ldots X_{n}$ be iid with common continuous distribution having density $f_{\theta}(x)$ given by

$$
f_{\theta}(x)=\frac{1}{\theta} \exp \left\{-\frac{x}{\theta}\right\}, x \geq 0
$$

$f_{\theta}(x)=0$ otherwise. $(\theta>0$.)
(i) Find $E\left(X_{i}\right)$ and $\operatorname{Var}\left(X_{i}\right)$.
(ii) Find the maximum likelihood estimator of θ.
3. Let $X_{1}, X_{2}, \ldots X_{n}$ be iid with density $f_{\lambda}(x)$ given by

$$
f_{\lambda}(x)=\lambda \exp \{-x \lambda\}, x \geq 0
$$

$f_{\lambda}(x)=0$ otherwise. $\left(\lambda>0\right.$.) Find $E\left(X_{i}\right)$ and $\operatorname{Var}\left(X_{i}\right)$. Find the maximum likelihood estimator of λ.
4. Let $X_{1}, X_{2}, \ldots X_{n}$ be iid with Normal distribution with mean θ and variance 64 . Consider the problem of testing Null Hypothesis $H_{0}: \theta=2$ against the alternate hypothesis $H_{1}: \theta=1$.
Suggest a critical region for the test. Specify the exact critical region with level of significance 0.05. Further suppose that we have $n=25$ observations $x_{1}, x_{2}, \ldots, x_{25}$ and we have

$$
\sum_{i=1}^{25} x_{i}=24.8
$$

Compute the p-value and write down the conclusion.
5. Let $X_{1}, X_{2}, \ldots X_{n}$ be iid with Normal distribution with mean θ and variance 64 . Consider the problem of testing Null Hypothesis $H_{0}: \theta=1$ against the alternate hypothesis $H_{1}: \theta=2$.
Suggest a critical region for the test. Specify the exact critical region with level of significance 0.05 .Further suppose that we have $n=25$ observations $x_{1}, x_{2}, \ldots, x_{25}$ and we have

$$
\sum_{i=1}^{25} x_{i}=24.8
$$

Compute the p-value and write down the conclusion.
6. Let $X_{1}, X_{2}, \ldots X_{64}$ be iid $P\left(X_{i}=0\right)=1-p$ and $P\left(X_{i}=1\right)=p$. Consider the problem of testing Null Hypothesis $H_{0}: p=0.5$ against the alternate hypothesis $H_{1}: p=0.45$.
Suggest a critical region for the test. Specify the exact critical region with level of significance 0.05 . Further suppose that we have

$$
\sum_{i=1}^{64} X_{i}=28
$$

Write down the conclusion.
7. Let $X_{1}, X_{2}, \ldots X_{36}$ be iid with Normal distribution with mean μ and variance 25 . Write down the critical region for testing $H_{0}: \mu=0$ against the alternative $H_{1}: \mu=1$ for level of significance 5%. Find the power of the test when (i) $n=16$, (ii) $n=25$, (iii) $n=36$, (iv) $n=64$ and (v) $\mathrm{n}=100$.
(use software or normal tables).

