Exercises

1. Let X_1, X_2, \ldots, X_n be iid with density $f_{\theta}(x)$ given by

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{(x-\theta)^2}{2}\}, -\infty < x < \infty.$$

Find the maximum likelyhood estimator of θ .

2. Let X_1, X_2, \ldots, X_n be iid with common continuous distribution having density $f_{\theta}(x)$ given by

$$f_{\theta}(x) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}, \ x \ge 0;$$

 $f_{\theta}(x) = 0$ otherwise. $(\theta > 0.)$ (i) Find $E(X_i)$ and $Var(X_i)$.

(ii) Find the maximum likelihood estimator of θ .

3. Let X_1, X_2, \ldots, X_n be iid with density $f_{\lambda}(x)$ given by

$$f_{\lambda}(x) = \lambda \exp\{-x\lambda\}, \ x \ge 0;$$

 $f_{\lambda}(x) = 0$ otherwise. $(\lambda > 0.)$ Find $E(X_i)$ and $Var(X_i)$. Find the maximum likelihood estimator of λ .

4. Let X₁, X₂,...X_n be iid with Normal distribution with mean θ and variance 64. Consider the problem of testing Null Hypothesis H₀ : θ = 2 against the alternate hypothesis H₁ : θ = 1. Suggest a critical region for the test. Specify the exact critical region with level of significance 0.05. Further suppose that we have n = 25 observations x₁, x₂,..., x₂₅ and we have

$$\sum_{i=1}^{25} x_i = 24.8$$

Compute the *p*-value and write down the conclusion.

5. Let X_1, X_2, \ldots, X_n be iid with Normal distribution with mean θ and variance 64. Consider the problem of testing Null Hypothesis H_0 : $\theta = 1$ against the alternate hypothesis H_1 : $\theta = 2$. Suggest a critical region for the test. Specify the exact critical region with level of significance 0.05.Further suppose that we have n = 25 observations x_1, x_2, \ldots, x_{25} and we have

$$\sum_{i=1}^{25} x_i = 24.8.$$

Compute the *p*-value and write down the conclusion.

6. Let $X_1, X_2, \ldots X_{64}$ be iid $P(X_i = 0) = 1 - p$ and $P(X_i = 1) = p$. Consider the problem of testing Null Hypothesis H_0 : p = 0.5 against the alternate hypothesis H_1 : p = 0.45.

Suggest a critical region for the test. Specify the exact critical region with level of significance 0.05. Further suppose that we have

$$\sum_{i=1}^{64} X_i = 28.$$

Write down the conclusion.

7. Let $X_1, X_2, \ldots X_{36}$ be iid with Normal distribution with mean μ and variance 25. Write down the critical region for testing H_0 : $\mu = 0$ against the alternative H_1 : $\mu = 1$ for level of significance 5%. Find the power of the test when (i) n=16, (ii) n=25, (iii) n=36, (iv) n=64 and (v) n=100.

(use software or normal tables).