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Censoring vs Truncation

Censoring: Sources/events can be detected, but the
values (measurements) are not known completely. We
only know that the value is less than some number.

Truncation: An object can be detected only if its value is
greater than some number; and the value is completely
known in the case of detection. For example, objects of
certain type in a specific region of the sky will not be
detected by the instrument if the apparent luminosity of
objects is less than a certain lower limit. This often
happens due to instrumental limitations or due to our
position in the universe.

The main difference between censoring and truncation is
that censored object is detectable while the object is not
even detectable in the case of truncation.



Example: Left/Right Censoring

Right Censoring: the exact value X is not measurable,
but only T = min(X,C) and δ = I(X ≤ C) are
observed.

Left Censoring: Only T = max(X,C) and δ = I(X ≥ C)
are observed.



Example: Interval/Double Censoring

This occurs when we do not observe the exact time of failure,
but rather two time points between which the event occurred:

(T, δ) =


(X, 1) : L < X < R
(R, 0) : X > R

(L,−1) : X < L

where L and R are left and right censoring variables.



Survival Function

Cumulative failure function:

F (t) = P (T ≤ t)

Survivor function:

S(t) = P (T > t) = 1− F (t)



Kaplan-Meier Estimator

Nonparametric estimate of survivor function
S(t) = P (T > t)

Intuitive graphical presentation

Commonly used to compare two populations







Kaplan-Meier Estimator (continued)

Let

ti: ith ordered observation

di: number of ‘censored’ events at ith ordered observation

Ri: number of subjects ‘at-risk’ at ith ordered observation

The Kaplan Meier estimator of the survival function is

S(t) =
∏
ti≤t

(
1− di

Ri

)



Truncation



Left Truncation: An event/source is detected if its
measurement is greater than a truncation variable.

Right Truncation: An event/source is detected if its
measurement is less than a truncation variable.

Double Truncation: This occurs when the time to event
of interest in the study sample is in an interval.

The pair (X, Y ) is observed only if X ≥ Y , X is the
measurement of interest and Y is the truncation variable
M = m+ 5 logP − 5
P parallax
Object is detected only if P ≥ `.



Forty years ago, distinguished astrophysicist Donald
Lynden-Bell derived a fundamental statistical result in the
appendix to an astronomical study: the unique nonparametric
maximum likelihood estimator for a univariate dataset subject
to random truncation. The method is needed to establish
luminosity functions from flux-limited surveys, and is far better
than the more popular heuristic 1/Vmax method by Schmidt
(1968). Two young astrostatisticians are now developing
Lynden-Bell’s method further. Schafer (2007) gives a
nonparametric estimation for estimating the bivariate
distribution when one variable is truncated. Kelly et al. use a
Bayesian approach for a normal mixture model (combination
of Gaussians) to the luminosity function.
Lynden-Bell (1971, MNRAS.155, 95)



Lynden-Bell Estimator



Lynden-Bell-Woodroofe Estimator

Model: observe y only if y > u(x).

Data: (x1, y1), . . . , (xn, yn).

Risk set numbers:

Nj = #{i : ui ≤ y(j) and yi ≤ y(j)}

where ui = u(xi) and y(i) is ith ordered value of
y = (y1, . . . , yn)

In the KM estimator, Nj is the number of points at risk
just before the jth event.

The only differences in comparable points between
truncated cases and censoring cases is that points with
yi > yk but t(xi) > yk are not considered at risk in the
truncated case. This is because these points cannot be
observed.



Lynden-Bell- Woodroofe Estimator (continued)

Lyden-Bell-Woodroofe survival function estimator:

LBW (t) =
∏

y(j)≤t

(
1− 1

Nj

)

Lynden-Bell, D. 1971, MNRAS, 155, 95
Woodroofe, M. 1985, Ann. Stat., 13, 163



Doubly truncated data:

Efron’s Nonparametric MLE



15,343 quasars – 22 –

0 1 2 3 4 5

−
24

−
26

−
28

−
30

Redshift

A
bs

ol
ut

e 
M

ag
ni

tu
de

Fig. 1.— Quasar data from the Sloan Digital Sky Survey, the sample from Richards et al.

(2006). Quasars within the dashed region are used in this analysis. The removed quasars

are those with M ≤ −23.075, which fall into the irregularly-shaped corner at the lower left

of the plot, and those with z ≤ 3 and apparent magnitude greater than 19.1, which fall into

a very sparsely sampled region.



Data

The data shown in the figure, consists of 15,343 quasars.
From these, any quasar is removed if it has
z ≥ 5.3, z ≤ 0.1,M ≥ −23.075, or M ≤ −30.7. In addition,
for quasars of redshift less than 3.0, only those with apparent
magnitude between 15.0 and 19.1, inclusive, are kept; for
quasars of redshift greater than or equal to 3.0, only those
with apparent magnitude between 15.0 and 20.2 are retained.
These boundaries combine to create the irregular shape shown
by the dashed line. This truncation removes two groups of
quasars from the Richards et al. (2006) sample. There are
15,057 quasars remaining after this truncation.



Schafer, C. M. (2007, ApJ, 661, 703) uses
semi-parametric methods
log φ(z,M) = f(z) + g(M) + h(z,M.θ), (zi,Mi)
observed.

Kelly et al. (2008, ApJ, 682, 874) use Bayesian approach
for normal mixture model.

The results obtained are better than the heuristic 1/Vmax

of Schmidt (1968, ApJ, 151, 393)
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