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Motivation

It is often relatively easy to devise an estimator θ̂ of a
parameter θ of interest, but it is difficult or impossible to
determine the distribution or variance (sampling
variability) of that estimator. Variance helps in assessing
the accuracy of the estimators.

One might fit a parametric model to the dataset, yet not
be able to assign confidence intervals to see how
accurately the parameters are determined.

Classical statistics focused on estimators which have a
simple closed form and which could be analyzed
mathematically. Except for a few important but simple
nonparametric statistics, these methods involve often
unrealistic assumptions about the data; e.g. that it is
generated from a Gaussian or exponential population.



Simple Statistical Problem

X1, . . . , Xn are random variables from a distribution F with
mean µ and variance σ2.

Sample mean X̄ =
1

n

n∑
i=1

Xi estimates the population mean µ

Data vs. Sampling distribution of X̄

Sampling (unknown) distribution Gn of X̄ − µ is given by

Gn(x) = P(X̄ − µ ≤ x).

If F is normal, then Gn is normal. Otherwise, for large n

Gn(xσ/
√
n) ≈ 1√

2π

∫ x

−∞
e−

1
2
y2

dy.

Gn may not be symmetric in the non-normal case.

How to improve the approximation?



Resampling

Astronomers have often used Monte Carlo methods to
simulate datasets from uniform or Gaussian populations.
While helpful in some cases, this does not avoid the
assumption of a simple underlying distribution.

Resampling methods construct hypothetical ‘populations’
derived from the observed data, each of which can be
analyzed in the same way to see how the estimates
depend on plausible random variations in the data.

Resampling methods help evaluate statistical properties
using data rather than an assumed Gaussian or power law
or other distributions.



Monte Carlo simulation from data

Resampling the original data preserves (adaptively)
whatever distributions are truly present, including
selection effects such as truncation (flux limits or
saturation).

Resampling procedure is a Monte Carlo method of
simulating ‘datasets’ from an observed/given data,
without any assumption on the underlying population.

Resampling procedures are supported by solid theoretical
foundations.



Jackknife

Bias reduction
Estimation of Variance

θ̂ estimator of θ
Jackknife estimation of variance of θ̂:

Estimate θ̂−i from X1, . . . , Xi−1, Xi+1, . . . , Xn

V arJ(θ̂) =
n− 1

n

n∑
i=1

(θ̂−i − θ̂)2

In general VarJ(θ̂) ≈ Var(θ̂); but not always
Example: θ̂ = Sample median



What is Bootstrap

Bootstrap is a resampling procedure.

X = (X1, . . . , Xn) - a sample from F

X∗ = (X∗1 , . . . , X
∗
n) - a simple random sample from the data.

θ̂ is an estimator of θ

θ∗ is based on X∗i

Examples:

θ̂ = X̄n, θ∗ = X̄∗n

θ̂ =
1

n

n∑
i=1

(Xi − X̄n)2, θ∗ =
1

n

n∑
i=1

(X∗i − X̄∗n)2

θ∗ − θ̂ behaves like θ̂ − θ



Nonparametric and Parametric Bootstrap

Simple random sampling from data is equivalent to drawing a
set of i.i.d. random variables from the empirical distribution.
This is Nonparametric Bootstrap.

Parametric Bootstrap if X∗1 , . . . , X
∗
n are i.i.d. r.v. from

Ĥn, an estimator of F based on data (X1, . . . , Xn).

Example of Parametric Bootstrap:

X1, . . . , Xn i.i.d. ∼ N(µ, σ2)

X∗1 , . . . , X
∗
n i.i.d. ∼ N(X̄n, s

2
n); s2

n = 1
n

∑n
i=1(Xi − X̄n)2

N(X̄n, s
2
n) is a good estimator of the distribution N(µ, σ2)



Bootstrap Variance

θ̂ is an estimator of θ based on X1, . . . , Xn.

θ∗ denotes the bootstrap estimator based on X∗1 , . . . , X
∗
n.

Var∗(θ̂) = E∗ (θ∗ − E(θ∗))2

In practice, generate N bootstrap samples of size n.
Compute θ∗1, . . . , θ

∗
N for each of the N samples.

θ̄∗ =
1

N

N∑
i=1

θ∗i

Var(θ̂) ≈ 1

N

N∑
i=1

(
θ∗i − θ̄∗

)2



Bootstrap Distribution

Statistical inference requires sampling distribution Gn,
given by Gn(x) = P(

√
n(X̄ − µ)/σ ≤ x)

statistic bootstrap version

√
n(X̄ − µ)/σ

√
n(X̄∗ − X̄)/sn

√
n(X̄ − µ)/sn

√
n(X̄∗ − X̄)/s∗n

where s2
n = 1

n

∑n
i=1(Xi − X̄)2 and s∗n

2 = 1
n

∑n
i=1(X

∗
i − X̄∗)2

For a given data, the bootstrap distribution GB is given by

GB(x) = P(
√
n(X̄∗ − X̄)/sn ≤ x|X)

GB is completely known and Gn ≈ GB.



Example

If Gn denotes the sampling distribution of
√
n(X̄ − µ)/σ

then the corresponding bootstrap distribution GB is given by

GB(x) = P∗(
√
n(X̄∗ − X̄)/sn ≤ x|X).

Construction of Bootstrap Histogram

M = nn bootstrap samples possible

X
∗(1)
1 , . . . , X∗(1)

n r1 =
√
n(X̄∗(1) − X̄)/sn

X
∗(2)
1 , . . . , X∗(2)

n r2 =
√
n(X̄∗(2) − X̄)/sn

. . . . . . . . . . . .

X
∗(M)
1 , . . . , X∗(M)

n rM =
√
n(X̄∗(M) − X̄)/sn

Frequency table or histogram based on r1, . . . , rM gives GB.



Confidence Interval for the mean

For n = 10 data points, M = ten billion

N ∼ n(log n)2 bootstrap replications suffice

– Babu and Singh (1983) Ann. Stat.

Compute
√
n(X̄∗(j) − X̄)/sn for N bootstrap samples

Arrange them in increasing order

r1 < r2 < · · · < rN k = [0.05N ], m = [0.95N ]

90% Confidence Interval for µ is

X̄ − rm
sn√
n
≤ µ < X̄ − rk

sn√
n



Bootstrap at its best

Pearson’s correlation coefficient and its bootstrap version

ρ̂ =
1
n

∑n
i=1(XiYi − X̄Ȳ )√(

1
n

∑n
i=1(Xi − X̄)2

) (
1
n

∑n
i=1(Yi − Ȳ )2

)
ρ∗ =

1
n

∑n
i=1(X∗i Y

∗
i − X̄∗nȲ ∗n )√(

1
n

∑n
i=1(X∗i − X̄∗n)2

) (
1
n

∑n
i=1(Y ∗i − Ȳ ∗n )2

)
Example of Smooth Functional Model

ρ̂ = H(Z̄), where Zi = (XiYi, X
2
i , Y

2
i , Xi, Yi)

H(a1, a2, a3, a4, a5) =
(a1 − a4a5)√

((a2 − a2
4)(a3 − a2

5))

ρ∗ = H(Z̄∗), where Z∗i = (X∗i Y
∗
i , X

∗2
i , Y

∗2
i , X∗i , Y

∗
i )



Smooth Functional Model: General case

H is a smooth function and Z1 is a random vector.
θ̂ = H(Z̄) is an estimator of the parameter θ = H(E(Z1))

Division (normalization) of
√
n(H(Z̄)−H(E(Z1)) by its

standard deviation makes them units free.
Studentization, if estimates of standard deviations are used.

tn =
√
n(H(Z̄)−H(E(Z1))/σ̂n

t∗n =
√
n(H(Z̄∗)−H(Z̄))/σ∗n

σ̂2
n = `′(Z̄)Σn`(Z̄) and σ∗2n = `′(Z̄∗)Σ∗n`(Z̄

∗)

` = ∂H vector of first partial derivatives of H
Σn sample covariance matrix of Z1, . . . , Zn

Σ∗n covariance matrix of bootstrap sample Z∗1, . . . , Z
∗
n



Theory

Under `(Z̄) 6= 0

P (tn ≤ x) = Φ(x) +
1√
n
p(x)φ(x) + error

P ∗(t∗n ≤ x) = Φ(x) +
1√
n
pn(x)φ(x) + error

√
n|P(tn ≤ x)− P∗(t∗n ≤ x)| → 0

Same theory works for Parametric Bootstrap.

– Babu and Singh (1983) Ann. Stat.
– Babu and Singh (1984) Sankhyā
– Singh and Babu (1990) Scand J. Stat.



Bootstrap Percentile-t Confidence Interval

In practice

Randomly generate N ∼ n(log n)2 bootstrap samples

Compute t
∗(j)
n for each bootstrap sample

Arrange them in increasing order
u1 < u2 < · · · < uN , k = [0.05N ], m = [0.95N ]

90% Confidence Interval for the parameter θ is

θ̂ − um
σ̂n√
n
≤ θ < θ̂ − uk

σ̂n√
n

This is called bootstrap PERCENTILE-t confidence interval



When does bootstrap work well

Sample Means

Sample Variances

Central and Non-central t-statistics
(with possibly non-normal populations)

Sample Coefficient of Variation

Maximum Likelihood Estimators

Least Squares Estimators

Correlation Coefficients

Regression Coefficients

Smooth transforms of these statistics



When does Bootstrap fail

θ̂ = max
1≤i≤n

Xi Non-smooth estimator

– Bickel and Freedman (1981) Ann. Stat.

θ̂ = X̄ and EX2
1 =∞ Heavy tails

– Babu (1984) Sankhyā
– Athreya (1987) Ann. Stat.

θ̂ − θ = H(Z̄)−H(E(Z1) and ∂H(E(Z1)) = 0

Limit distribution is like linear combinations of Chi-squares.
But here a modified version works.

– Babu (1984) Sankhyā
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– Athreya (1987) Ann. Stat.

θ̂ − θ = H(Z̄)−H(E(Z1) and ∂H(E(Z1)) = 0

Limit distribution is like linear combinations of Chi-squares.
But here a modified version works.

– Babu (1984) Sankhyā
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Linear Regression

Yi = α + βXi + εi

E(εi) = 0 and Var(εi) = σ2
i

Least squares estimators of β and α

β̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

α̂ = Ȳ − β̂X̄

Var(β̂) =

∑n
i=1(Xi − X̄)2σ2

i

L2
n

Ln =
n∑

i=1

(Xi − X̄)2



Classical Bootstrap

Estimate the residuals ei = Yi − α̂− β̂Xi

Draw e∗1, . . . , e
∗
n from ê1, . . . , ên, where êi = ei − 1

n

∑n
j=1 ej.

Bootstrap estimators

β∗ = β̂ +

∑n
i=1(Xi − X̄)(e∗i − ē∗)∑n

i=1(Xi − X̄)2

α∗ = α̂ + (β̂ − β∗)X̄ + ē∗

VB = EB(β∗ − β̂)2 ≈ Var(β̂) efficient if σi = σ

VB does not approximate the variance of β̂ under
heteroscedasticity (i.e. unequal variances σi)



Paired Bootstrap

Resample the pairs (X1, Y1), . . . , (Xn, Yn)
(X̃1, Ỹ1), . . . , (X̃n, Ỹn)

β̃ =

∑n
i=1(X̃i − ¯̃X)(Ỹi − ¯̃Y )∑n

i=1(X̃i − ¯̃X)2
, α̃ = ¯̃Y − β̃ ¯̃X

Repeat the resampling N times and get

β
(1)
PB, . . . , β

(N)
PB

1

N

N∑
i=1

(β
(i)
PB − β̂)2 ≈ V ar(β̂)

even when not all σi are the same



Comparison

The Classical Bootstrap

– Efficient when σi = σ
– But inconsistent when σi’s differ

The Paired Bootstrap

– Robust against heteroscedasticity
– Works well even when σi are all different



FORTRAN code

PAIRED BOOTSTRAP RESAMPLING
NSIM = INT(N ∗ ALOG(FLOAT(N))∗∗2)
DO 20 ISIM = 1,NSIM
DO 10 I = 1,N
J = INT(RANDOM ∗ N + 1.0)
XBOOT(I) = X(J)
10 YBOOT(I) = Y(J)
20 CONTINUE

FORTRAN code illustrating the paired bootstrap resampling
for a two dimensional dataset (xi, yi), i = 1, . . . , N .
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