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1 Introduction

The aim of model fitting is to provide most parsimonious ‘best’ fit of a parametric model
to data. It might be a simple, heuristic model to phenomenological relationships between
observed properties in a sample of astronomical objects. Examples include characterizing
the Fundamental Plane of elliptical galaxies or the power law index of solar flare ener-
gies. Perhaps more important are complex nonlinear models based on our astrophysical
understanding of the observed phenomenon. Here, if the model family truly represents the
underlying phenomenon, the fitted parameters give insights into sizes, masses, compositions,
temperatures, geometries, and evolution of astronomical objects. Examples of astrophysical
modeling include:

• Interpreting the spectrum of an accreting black hole such as a quasar. Is it a nonther-
mal power law, a sum of featureless blackbodies, and/or a thermal gas with atomic
emission and absorption lines?

• Interpreting the radial velocity variations of a large sample of solar-like stars. This
can lead to discovery of orbiting systems such as binary stars and exoplanets, giving
insights into star and planet formation.

• Interpreting the spatial fluctuations in the cosmic microwave background radiation.
What are the best fit combinations of baryonic, Dark Matter and Dark Energy com-
ponents? Are Big Bang models with quintessence or cosmic strings excluded?

The mathematical procedures used to link data with astrophysical models fall into the
realm of statistics. The relevant methods fall under the rubrics of statistical model selec-
tion, regression, and goodness-of-fit. Astronomers’ understanding of such methods are often
rather simplistic, and we seek here to develop increased sophistication in some aspects of
the methodological issues. We discuss the advantages and limitations of some traditional
model fitting methods and suggest new procedures when these methods are inadequate.
In particular, we discuss some recently developed procedures based on nonparametric re-
sampling designed for model selection and goodness-of-fit when the astronomer not only
seeks the best parameters of the model, but wishes to consider entirely different families of
parametric models.

2 Challenges of Model Selection and Fitting

Consider the astronomical spectrum illustrated in Figure 1a where flux from a source is
plotted against energy of light received by an X-ray telescope. Here the photons are shown
collected into constant-width bins, and the measured flux value F is accompanied by an

1

Page 249



error bar σ representing the uncertainty of the intensity at each energy based on the square-
root of the number of counts in the bin. The dataset shown happens to be a low-resolution
spectrum from the Chandra Orion Ultradeep Project (COUP) where NASA’s Chandra X-
ray Observatory observed about 1400 pre-main sequence stars in the Orion Nebula region
for 13 days (Getman et al. 2005). But it could easily be an optical spectrum of a high-
redshift starburst galaxy, or a millimeter spectrum of a collapsing molecular cloud core, or
the spectrum of a gamma-ray burst at the birth of a black hole.

The histogram in Figure 1a shows the best-fit astrophysical model assuming a plausi-
ble emission mechanism: a single-temperature thermal plasma with solar abundances of
elements. This model M has three free parameters – plasma temperature, line-of-sight ab-
sorption, and normalization – which we denote by the vector θ. The astrophysical model
has been convolved with complicated functions representing the sensitivity of the telescope
and detector. The model is fitted by minimizing chi-square with an iterative procedure.
That is

θ̂ = arg min
θ

χ2(θ) = arg min
θ

N∑

i=1

(
yi −Mi(θ)

σi

)2

.

Chi-square minimization is a misnomer. It is known as parameter estimation by weighted
least squares. Confidence intervals on best-fit parameter values are obtained using a χ2

min-
plus-constant criterion. These procedures are familiar in the astronomical community (e.g.
Bevington 1969).

There are important limitations to χ2 minimization for use in astronomical model selec-
tion and fitting. The procedure depends strongly on Gaussian assumptions. It fails when
the errors are non-Gaussian (e.g. small-N problems with Poissonian errors). It does not
provide clear procedures for adjudicating between models with different numbers of pa-
rameters (e.g. one- vs. two-temperature models) or between different acceptable models
(e.g. local minima in χ2(θ) space). It can be difficult to obtain confidence intervals on
parameters when complex correlations between the estimators of parameters are present
(e.g. non-parabolic shape near the minimum in χ2(θ) space).

Figure 1b shows an important alternative approach to the model fitting and goodness-
of-fit problem. Here the energies of photons of observed spectrum are shown individually
rather than in a binned histogram. In statistical parlance, this is called the empirical
distribution function (EDF), and is advantageous over the binned histogram because the
exact measured values are used. This avoids the often arbitrary choices of bin width(s) and
starting point in histograms, and the sometimes-inaccurate assumption of

√
n error bars on

binned values. There is a large statistical literature on the difficulty of choosing bin widths,
and indeed on choosing between histograms and other data smoothing procedures. Narrow
bins or smoothing kernels can be dominated by noise while wide bins can miss physically
important structure.

Figure 1c illustrates another major astrostatistical question: When a “good” model
is found with parameters θ0, what is an acceptable range of parameter values around θ0

consistent with the data? In the example shown, we might ask: “What is the confidence
interval of absorption consistent with the data at 99% significance?” This question is not
simple to answer. The scientist must specify in advance whether the parameter of interest is
considered in isolation or in consort with other parameters, whether the statistical treatment
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Figure 1: An example of astrophysical model fitting using a spectrum with 264 photons
from the Chandra X-ray Observatory. (a) Best-fit thermal model (histogram) to differential
binned data (separated points with error bars)obtained by minimum-χ2. Here the absorp-
tion parameter has value AV ∼ 1 mag. Data-minus-residuals appear in the bottom plot.
(b) Thermal model (smooth curve) obtained by minimizing the K-S statistic, its distance
to the empirical distribution (step) function. The resulting parameters are very similar to
the χ2 fit.
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Figure 1: Continued. (c) An example of the correct model family but incorrect parameter
value: thermal model with absorption set at AV = 10 mag. (d) An example of an incorrect
model family: best-fit powerlaw model with absorption AV ∼ 1 mag.
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involves binned histograms or EDFs, and whether 67% (1σ equivalent), 90% or 99.7% (3σ
equivalent) values should be reported. The statistician must decide which statistic to use,
whether normal approximations are valid, and how extraneous model parameters should be
treated.

Finally, Figure 1d treats a broader scientific question: Are the data consistent with
different families of astrophysical models, irrespective of the best-fit parameter values within
a family? We illustrate this here by obtaining the best-fit model using a nonthermal power
law X-ray spectrum rather than a thermal plasma X-ray spectrum. Among statisticians,
these are called ‘non-nested’ models. Even decisions between nested models can be tricky;
for example, should the dataset in Figure 1 be modeled with thermal models with arbitrary
elemental abundances, or is the assumption of solar abundances adequate?

3 Model Selection

A good statistical model should be parsimonious (model simplicity), conform fitted model
to the data (goodness of fit), and should be easily generalizable. Occam’s Razor, a philo-
sophical principle credited to the English Philosopher William of Ockham (1285-1349), that
essentially says that the simplest solution is usually the correct one, is the main guiding
principle for statistical modeling. Occam’s Razor suggests that we leave off extraneous ideas
to better reveal the truth. That is, select a model that adequately accommodates the data.
It neither underfits that excludes key variables or effects, nor overfits that unnecessarily
be complex by including extraneous explanatory variables or effects. Underfitting induces
bias and overfitting induces high variability. A model selection criterion should balance the
competing objectives of conformity to the data and parsimony.

Hypothesis testing is one of the criteria used for comparing two models. Classical hy-
pothesis testing methods are generally used for nested models. However, it does not treat
models symmetrically. To set up framework for general model selection, let D denote the ob-
served data and let M1, . . . ,Mk denote the models for D under consideration. Each model
Mj , let f(D|θj ;Mj) and $(θj) = log f(D|θj ;Mj) denote the likelihood and loglikelihood
respectively, θi is a pj dimensional parameter vector. Here f(D|θj ;Mj) denotes the proba-
bility density function (in the continuous case) or probability mass function (in the discrete
case) evaluated at the data D. Most of the methodology can be framed as a comparison
between two models M1 and M2.

3.1 Special case of Nested Models

The model M1 is said to be nested in M2, if some coordinates of θ1 are fixed, i.e. θ2 = (α, γ)
and θ1 = (α, γ0), where γ0 is some known fixed constant vector. In this case, comparison
of M1 and M2 can be considered as a classical hypothesis testing problem of H0 : γ = γ0.

For example, the model M2 refers to normal with mean µ and variance σ2, while M1

refers to normal with mean 0 and variance σ2. The model selection problem can thus be
framed in terms of statistical hypothesis testing H0 : µ = 0, with free parameter σ. There
are some objections to using hypothesis testing to decide between the two models M1 and
M2, as they are not treated symmetrically by the test in which the null hypothesis is M1.
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We cannot accept H0, we can only reject or fail to reject H0. As larger samples can detect
the discrepancies, they tend to make it more likely to reject the null hypothesis.

We now look at three different ideas for testing H0.

3.2 Three statistical hypotheses tests

The Wald Test, the Likelihood Ratio Test, and the Rao’s Score Test, based on maximum
likelihood estimators, are collectively referred to in statistical literature as the Holy Trinity
of statistical hypotheses. These statistical hypotheses tests can be used to test linear and
non-linear restrictions among parameters. The three tests are described below in the case
of scalar (1-dimensional) parameter θ.

To test the null hypothesis H0 : θ = θ0, the Wald Test uses Wn = (θ̂n − θ0)2/V ar(θ̂n),
the standardized distance between θ0 and the maximum likelihood estimator θ̂n based on a
data of size n. The distribution of Wn is approximately the Chi-sqaure distribution with one
degree of freedom. In general variance of θ̂n is not known, however, a close approximation
is 1/I(θ̂n), where I(θ) = E((f ′(X; θ)/f(X; θ))2) is the Fisher’s information, f denotes the
probability density function of the random variable X, and f ′ denotes the derivative of f
with respect to θ. Thus I(θ̂n)(θ̂n − θ0)2 has chi-square distribution in the limit, and the
Wald test rejects the null hypothesis H0, when I(θ̂n)(θ̂n − θ0)2 is large.

The Likelihood Ratio Test uses the logarithm of ratio of likelihoods, $(θ̂n)−$(θ0), where
$(θ) denotes the loglikelihood at θ. While Rao’s Score Test (also known as Lagrangian
Multiplier Test) uses the statistic S(θ0) = ($′(θ0))2/(nI(θ0)), where $′ denotes the derivative
of $, and as before I denotes the Fisher’s Information. That is, if X, X1, . . . ,Xn denote
independent random variables from a common probability density function f(.; θ), then
$′(θ0) =

∑n
i=1(f

′(Xi; θ0)/f(Xi; θ0)). Hence

S(θ0) =
1

nI(θ0)

(
n∑

i=1

f ′(Xi; θ0)
f(Xi; θ0)

)2

.

For example, in the case of data from normal (Gaussian) distribution

f(y; (µ, σ2)) =
1
σ

φ((y − µ)/σ) =
1√
2πσ

exp
{
− 1

2σ2
(y − µ)2

}
,

where φ denotes the standard normal probability density function.
The three tests are equivalent to the first order of asymptotics, but differ to some extent

in the second order properties. No single test among these three is uniformly better than
the others.

In the regression context with data y1, . . . , yn and Gaussian residuals, the loglikelihood
$ is given by

$(β) = log
n∏

i=1

1
σ

φ((yi − x′iβ)/σ).

3.3 Information Criteria based model selection

If the model M1 happens to be nested in the model M2, the largest likelihood achievable
by M2 will always be larger than that achievable by M1. It suggests adding a penalty on
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Figure 2: Wald Test is based on the distance between θ̂n and θ0; the Likelihood Ratio Test
is based on the distance from $(θ0) to $(θ̂n), the loglikelihoods; the Rao’s Score Test is based
on the gradient of the loglikelihood at θ0.

“larger” models would achive a balance between overfitting and underfitting. This leads to
the so called Penalized Likelihood approach.

The traditional maximum likelihood paradigm, as applied to statistical modeling, pro-
vides a mechanism for estimating the unknown parameters of a model having a specified
dimension and structure. Hirotugu Akaike extended this paradigm in [1] by considering a
framework in which the model dimension is also unknown. He proposed a framework where
both model estimation and selection could be simultaneously accomplished. Grounding in
the concept of entropy, Akaike proposed an information criterion (AIC), which is now popu-
larly known as Akaike’s Information Criterion, and is defined for model Mj , as 2$(θ̂j)−2pj .
The term 2$(θ̂j) is known as the goodness of fit term, and 2pj is known as the penalty term.
This penalty term increase as the complexity of the model grows. AIC is generally regarded
as the first model selection criterion, and it continues to be the most widely known and
used model selection tool among practitioners.

One advantage of AIC is that it does not require the assumption that one of the candidate
models is the ”true” or ”correct” model. It treats all the models symmetrically, unlike
hypothesis testing. AIC can be used to compare nested as well as non-nested models. AIC
can also be used to compare models based on different families of probability distributions.
One of the disadvantages of AIC is the requirement of large samples especially in complex
modeling frameworks. In addition, it is not consistent, in the sense that if p0 is the correct
number of parameters, and p̂ = pi (i = arg maxj 2$(θ̂j)−2pj), then limn→∞ P (p̂ > p0) > 0.
That is even if we have very large number of observations, p̂ does not approach the true
value.

Bayesian Information Criterion (BIC), sometimes called the Schwarz Bayesian Crite-
rion is another popular model selection criteria. Unlike AIC, BIC defined as

2$(θ̂j)− pj log n
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is consistent. Like AIC, the models need not be nested to be compared using BIC.
Conditions under which these two criteria are mathematically justified are often ignored

in practice. Some practitioners apply them even in situations where they should not be
applied. AIC penalizes free parameters less strongly than does the Schwartz’s BIC. A note
of caution: sometimes, these criteria are given a minus sign so the goal changes to finding
the minimizer.

4 Inference for Statistics Based on the EDF

Among astronomers, the Kolmogorov-Smirnov (K-S) statistic is popular, although other
EDF based statistics such as the Cramer-von Mises (C-vM) and Anderson-Darling (A-D)
statistics have better sensitivity for some data-model differences. However, as we review
in below, the goodness-of-fit probabilities derived from the K-S or other EDF statistics are
usually not correct when applied in model fitting situations with estimated parameters. As-
tronomers are thus often making errors in EDF model fitting.

Figure 3a shows a hypothetical EDF, the cumulative frequency distribution function of
the data. The three commonly used statistics, for inference on F , based on EDF mentioned
above are:

Kolmogorov-Smirnov (K-S): sup
x

|Fn(x)− F (x)|

Cramér-von Mises (C-vM):
∫

(Fn(x)− F (x))2 dF (x),

and Anderson - Darling (A-D):
∫

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x).

Here Fn is the EDF, F is the model distribution function, and “sup” means the supremum.
The K-S statistic is most sensitive to large-scale differences in location (i.e. median value)
and shape between the model and data. The C-vM statistic is effective for both large-scale
and small-scale differences in distribution shape. Both of these measures are relatively
insensitive to differences near the ends of the distribution. This deficiency is addressed by
the A-D statistic, a weighted version of the C-vM statistic to emphasize differences near
the ends.

The power of these statistics is that they are distribution-free as long as F is continuous.
That is, the probability distribution of these statistics is free from F . Consequently, the
confidence bands for the ‘unknown’ distribution F can be obtained from standard tables
of K-S, C-vM or A-D probabilities which depend only on the number of data points and
the chosen significance level. A typical confidence band based on Kolmogorov-Smirnov test
resembles Figure 3b.

But all these statistics are no longer distribution-free under two important and common
situations: when the data are multivariate, or when the model parameters are estimated
using the data. We address these situations here.

8

Page 256



Figure 3: (a) A hypothetical EDF. (b) Confidence bands around the EDF based on the K-S
statistic for 90% significance level.

4.1 Failure of the multivariate case

Let (X1, Y1) be a data point from a bivariate distribution F on the unit square. Simpson
(1951) shows that if F1 denotes the EDF of (X1, Y1), then

P
(
|F1(x, y)− F (x, y)| < .72, for all x, y

)
{

> 0.065 if F (x, y) = xy2

< 0.058 if F (x, y) = xy(x + y)/2.

Thus, the distribution of the K-S statistic varies with the unknown F and hence is not
distribution-free when two or more dimensions are present. The K-S statistic still is a
measure of “distance” between the data and model, but probabilities can not be assigned to
a given value of the statistic without detailed calculation for each case under consideration.
Several methodological studies in the astronomical literature discuss two-dimensional K-S
tests. The results may be unreliable to degrees that can not readily be calculated.

4.2 Failure when parameters are estimated from the data

The K-S statistic is also no longer distribution-free if some parameters are estimated from
the dataset under consideration. For example, consider the question whether the illustrated
X-ray spectrum supports a powerlaw in addition to a thermal model (Figure 1d). It may
seem natural to find the best-fit powerlaw and best-fit thermal models by a procedure such
as maximum likelihood, compute the K-S statistic for each case, and evaluate which model
is acceptable using the probabilities in standard tables. But it has long been established
that the K-S probabilities are incorrect in this circumstance (Lilliefors 1969). The K-S
probabilities are only valid if the model being tested is derived independently of the dataset
at hand; e.g. from some previous datasets or from prior astrophysical considerations.

5 Bootstrap resampling: A good solution

Fortunately, there is an alternative to the erroneous use of K-S procedure, although it
requires a numerically intensive calculation for each dataset and model addressed. It is based
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on bootstrap resampling, a data-based Monte Carlo method that has been mathematically
shown to give valid estimates of goodness-of-fit probabilities under a very wide range of
situations (Babu and Rao 1993).

We now outline the mathematics underlying bootstrap calculations. Let {F (.; θ) : θ ∈
Θ} be a family of continuous distributions parametrized by θ. We want to test whether
the univariate dataset X1, . . . ,Xn comes from F = F (.; θ) for some θ = θ0. The K-S,
C-vM and A-D statistics (and a few other goodness-of-fit tests) are continuous functionals
of the process, Yn(x; θ̂n) =

√
n
(
Fn(x) − F (x; θ̂n)

)
. Here Fn denotes the EDF of X1, . . . ,

Xn, θ̂n = θn(X1, . . . ,Xn) is an estimator of θ derived from the dataset, and F (x; θ̂n) is the
model being tested. For a simple example, if {F (.; θ) : θ ∈ Θ} denotes the Gaussian family
with θ = (µ, σ2), then θ̂n can be taken as (X̄n, s2

n) where X̄n is the sample mean and s2
n is

the sample variance based on the data X1, . . . ,Xn. In the astrophysical example considered
in §2, F is the family of thermal models with three parameters.

In the case of evaluating goodness-of-fit for a model where the parameters have been
estimated from the data, the bootstrap can be computed in two different ways: the paramet-
ric bootstrap and the nonparametric bootstrap. The parametric bootstrap may be familiar
to the astronomer as a well-established technique of creating fake datasets realizing the
parametric model by Monte Carlo methods (e.g. Press et al. 1997). The actual values in
the dataset under consideration are not used. The nonparametric bootstrap, in contrast, is
a particular Monte Carlo realizations of the observed EDF using a “random selection with
replacement” procedure.

We now outline the mathematics underlying these techniques. Let F̂n be an estimator
of F , based on X1, . . . ,Xn. In order to bootstrap, we generate data X∗

1 , . . . ,X∗
n from the

estimated population F̂n and then construct θ̂∗n = θn(X∗
1 , . . . ,X∗

n) using the same functional
form. For example, if F (.; θ) is Gaussian with θ = (µ, σ2) and if θ̂n = (X̄n, s2

n), then
θ̂∗n = (X̄∗

n, s∗2n ).

5.1 Parametric Bootstrap

The bootstrapping procedure is called parametric if F̂n = F (.; θ̂n); that is, we generate
data X∗

1 , . . . ,X∗
n from the model assuming the estimated parameter values θ̂n. The process

Y P
n (x) =

√
n
(
F ∗

n(x) − F (x; θ̂∗n)
)

and the sample process Yn(x) =
√

n
(
Fn(x) − F (x; θ̂n)

)

converge to the same Gaussian process Y . Consequently, Ln =
√

n supx |Fn(x)− F (x; θ̂n)|
and L∗n =

√
n supx |F ∗

n(x) − F (x; θ̂∗n)| have the same limiting distribution. For the K-S
statistic, the critical values of Ln can be derived as follows: construct B resamples based
on the parametric model (B ∼ 1000 should suffice), arrange the resulting L∗n values in
increasing order to obtain 90 or 99 percentile points for getting 90% or 99% critical values.
This procedure replaces the incorrect use of the standard probability tabulation.

5.2 Nonparametric Bootstrap

The nonparametric bootstrap involving resamples from the EDF;

Y N
n (x) =

√
n
(
F ∗

n(x)− F (x; θ̂∗n)
)
−Bn(x)

=
√

n
(
F ∗

n(x)− Fn(x) + F (x; θ̂n)− F (x; θ̂∗n)
)
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is operationally easy to perform but requires an additional step of bias correction

Bn(x) =
√

n(Fn(x)− F (x; θ̂n)).

The sample process Yn and the bias corrected nonparametric process Y N
n converge to

the same Gaussian process Y . That is, Ln =
√

n supx |Fn(x) − F (x; θ̂n)| and J∗n =
supx |

√
n

(
F ∗

n(x) − F (x; θ̂∗n)
)
− Bn(x)| have the same limiting distribution. The critical

values of the distribution of Ln can then be derived as in the case of parametric bootstrap.
For detailed understanding of the regularity conditions under which these results hold see
Babu and Rao (2004).

6 Confidence Limits Under Misspecification of Model Family

We now address the more advanced problem of comparing best-fit models derived for non-
nested model families; e.g. the powerlaw vs. thermal model fits in Figure 1. Essentially,
we are asking ‘How far away’ is the unknown distribution underlying the observed dataset
from the hypothesized family of models?

Let the original dataset X1, . . . ,Xn come from an unknown distribution H. H may or
may not belong to the family {F (.; θ) : θ ∈ Θ}. Let F (., θ0) be the specific model in the
family that is ‘closest’ to H where proximity is based on the Kullback-Leibler information,∫

log
(
h(x)/f(x; θ)

)
dH(x) ≥ 0, which arises naturally due to maximum likelihood argu-

ments and has advantageous properties. Here h and f are the densities (i.e. derivatives) of
H and F .

If the maximum likelihood estimator θ̂n → θ0, then Un(x; θ̂n) =
√

n
(
Fn(x)−F (x; θ̂n)

)
−√

n
(
H(x) − F (x; θ0)

)
converges weakly to a Gaussian process U (Babu and Rao 2003).

In this (nonparametric bootstrap) case, Y N
n (x) =

√
n
(
F ∗

n(x) − F (x; θ̂∗n)
)
−
√

n
(
Fn(x) −

F (x; θ̂n)
)
, and Un converge to the same Gaussian process. For the K-S statistic, for any

0 < α < 1,

P
(√

n sup
x

|Fn(x)− F (x; θ̂n)− (H(x)− F (x; θ0))| ≤ C∗
α

)
− α→ 0,

where C∗
α is the α-th quantile of supx |

√
n

(
F ∗

n(x) − F (x; θ̂∗n)
)
−
√

n
(
Fn(x) − F (x; θ̂n)

)
|.

This provides an estimate of the distance between the true distribution and the family of
distributions under consideration (Babu and Bose 1988).
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