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What is Statistial Inferene?It is an inverse problem as in `Toy Example':Example 1 (Toy). Suppose a million andidate stars are examinedfor the presene of planetary systems assoiated with them. If 272`suesses' are notied, how likely that the suess rate is 1%,0.1%, 0.01%, · · · for the entire universe?Probability models for observed data involve diret probabilities:Example 2. An astronomial study involved 100 galaxies of whih20 are Seyfert galaxies and the rest are starburst galaxies. Toillustrate generalization of ertain onlusions, say 10 of these 100galaxies are randomly drawn. How many galaxies drawn will beSeyfert galaxies?This is exatly like an arti�ial problem involving an urn having 100marbles of whih 20 are red and the rest blue. 10 marbles aredrawn at random with replaement (repeatedly, one by one, afterreplaing the one previously drawn and mixing the marbles well).How many marbles drawn will be red?



Data and ModelsX = number of Seyfert galaxies (red marbles) in the sample (out ofsample size n = 10)P(X = k |θ) =

(nk)θk(1− θ)(n−k), k = 0, 1, . . . n (1)In (1) θ is the proportion of Seyfert galaxies (red marbles) in theurn, whih is also the probability of drawing a Seyfert galaxy ateah draw. In Example 2, θ = 20100 = 0.2 and n = 10. So,P(X = 0|θ = 0.2) = 0.810, P(X = 1|θ = 0.2) = 10× 0.2× 0.89,and so on.



In pratie, as in `Toy Example', θ is unknown and inferene aboutit is the question to solve.In the Seyfert/starburst galaxy example, if θ is not known and 3galaxies out of 10 turned out to be Seyfert, one ould ask:how likely is θ = 0.1, or 0.2 or 0.3 or . . .?Thus inferene about θ is an inverse problem:Causes (parameters) ←− E�ets (observations)



How does this inversion work?The diret probability model P(X = k |θ) provides a likelihoodfuntion for the unknown parameter θ when data X = x isobserved:l(θ|x) = f (x |θ) (= P(X = x |θ) when X is a disrete randomvariable) as funtion of θ for given x .Interpretation: f (x |θ) says how likely x is under di�erent θ or themodel P(.|θ), so if x is observed, thenP(X = x |θ) = f (x |θ) = l(θ|x) should be able to indiate what thelikelihood of di�erent θ values or P(.|θ) are for that x .As a funtion of x for �xed θ P(X = x |θ) is a probability massfuntion or density, but as a funtion of θ for �xed x , it has no suhmeaning, but just a measure of likelihood.



After an experiment is onduted and seeing data x , the only entityavailable to onvey the information about θ obtained from theexperiment is l(θ|x).For the Urn Example we have l(θ|X = 3) ∝ θ3(1− θ)7:
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Maximum Likelihood Estimation (MLE): If l(θ|x) measures thelikelihood of di�erent θ (or the orresponding models P(.|θ)), just�nd that θ = θ̂ whih maximizes the likelihood.For model (1)
θ̂ = θ̂(x) = x/n = sample proportion of suesses .This is only an estimate. How good is it? What is the possibleerror in estimation?Likelihood funtion l(θ|x) has nothing to say about these.
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Frequentist StatistisConsider repeating this experiment again and again. Then one anlook at all possible sample data. i.e. all possible x values. Utilizelong-run average behaviour of the MLE. i.e. treat θ̂ as a randomquantity by replaing x by X in θ̂(x). i.e. look at X/n where X antake all possible values, 0, 1, . . . n.X ∼ Binomial(n, θ) with the probability model (1). Noting thatthe variane of suh an X is nθ(1− θ), one obtains the variane ofX/n to be θ(1− θ)/n, whih an be estimated by θ̂(1− θ̂)/n. Ameasure of estimation error of θ̂ is the estimated standard deviationof X/n, namely, √θ̂(1− θ̂)/n. For further development we needlarge n, so that we an apply the Law of Large Numbers and theCentral Limit Theorem to X/n. Then, the estimator will be loseto the true θ probabilistially and also, it is approximatelydistributed like a Gaussian random variable with mean θ andvariane θ(1− θ)/n.



Con�dene StatementsSpei�ally, for large n, approximately
θ̂ − θ√

θ(1− θ)/n ∼ N(0, 1),or
θ̂ − θ√

θ̂(1− θ̂)/n ∼ N(0, 1). (2)From (2), an approximate 95% on�dene interval for θ (when n islarge) is
θ̂ ± 2√θ̂(1− θ̂)/n.



What Does This Mean?Simply, if we sample again and again, in about 19 ases out of 20this random interval
(

θ̂(X )− 2√θ̂(X )(1− θ̂(X ))/n, θ̂(X ) + 2√θ̂(X )(1− θ̂(X ))/n)will ontain the true unknown value of θ.Fine, but what an we say about the one interval that we anonstrut for the given sample or data x?Nothing; either θ is inside
(0.3− 2√0.3× 0.7/10, 0.3 + 2√0.3× 0.7/10) or it is outside.Can we say 0.3− 2√0.3× 0.7/10 ≤ θ ≤ 0.3 + 2√0.3× 0.7/10with 95% hane?Not in this approah. If θ is treated as �xed unknown onstant,onditioning on the given data X = x is meaningless.
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Conditioning on Data
• What other approah is possible, then?
• How does one ondition on data?
• How does one talk about probability of a model or ahypothesis?Example 3.(not from physis but mediine) Consider a blood testfor a ertain disease; result is positive (x = 1) or negative (x = 0).Suppose θ1 denotes disease is present, θ2 disease not present.Test is not on�rmatory. Instead the probability distribution of Xfor di�erent θ is:x = 0 x = 1 What does it say?

θ1 0.2 0.8 Test is +ve 80% of time if `disease present'
θ2 0.7 0.3 Test is −ve 70% of time if `disease not present'If for a partiular patient the test result omes out to be `positive',what should the dotor onlude?



What is the Question?
What is to be answered is `what are the hanes that the disease ispresent given that the test is positive?' i.e., P(θ = θ1|X = 1).What we have is P(X = 1|θ = θ1) and P(X = 1|θ = θ2).We have the `wrong' onditional probabilities. They need to be`reversed'. But how?
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The Bayesian ReipeReall Bayes Theorem: If A and B are two events,P(A|B) =
P(A and B)P(B)assuming P(B) > 0. Therefore, P(A and B) = P(A|B)P(B), andby symmetry P(A and B) = P(B|A)P(A). Consequently, if P(B|A)is given and P(A|B) is desired, noteP(A|B) =

P(A and B)P(B)
=

P(B|A)P(A)P(B)
.Rule of total probability says,P(B) = P(B and Ω) = P(B and A) + P(B and A)

= P(B|A)P(A) + P(B|A)(1− P(A)), soP(A|B) =
P(B|A)P(A)P(B|A)P(A) + P(B|A)(1− P(A))

(3)



Bayes Theorem allows one to invert a ertain onditional probabilityto get a ertain other onditional probability. How does this helpus?In our example we want P(θ = θ1|X = 1). From (3),P(θ = θ1 | X = 1)
=

P(X = 1 | θ = θ1)P(θ = θ1)P(X = 1 | θ1)P(θ = θ1) + P(X = 1 | θ2)P(θ = θ2) . (4)So, all we need is P(θ = θ1), whih is simply the probability that arandomly hosen person has this disease, or just the `prevalene' ofthis disease in the onerned population. The good dotor mostlikely has this information from his experiene in the �eld. But thisis not part of the experimental data. This is pre-experimentalinformation or prior information. If we have this, and are willing toinorporate it in the analysis, we get the post-experimentalinformation or posterior information in the form of P(θ|X = x).



In our example, if we take P(θ = θ1) = 0.05 or 5%, we getP(θ = θ1 | X = 1) =
0.8× 0.050.8× 0.05 + 0.3× 0.95 =

0.040.325 = 0.123whih is only 12.3% and P(θ = θ2 | X = 1) = 0.877 or 87.7%.Formula (4) whih shows how to `invert' the given onditionalprobabilities, P(X = x | θ) into the onditional probabilities ofinterest, P(θ | X = x) is an instane of the Bayes Theorem, andhene the Theory of Inverse Probability (usage at the time of Bayesand Laplae, late eighteenth entury and even by Je�reys), isknown these days as Bayesian inferene.



Ingredients of Bayesian inferene:likelihood funtion, l(θ|x); θ an be a parametervetorprior probability, π(θ)Combining the two, one gets the posterior probability density ormass funtion
π(θ | x) =






π(θ)l(θ|x)
Pj π(θj )l(θj |x) if θ is disrete;

π(θ)l(θ|x)
R

π(u)l(u|x) du if θ is ontinuous. (5)
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Inferene for Binomial proportionExample 2 ontd. Suppose we have no speial informationavailable on θ. Then assume θ is uniformly distributed on theinterval (0, 1). i.e., the prior density is π(θ) = 1, 0 < θ < 1.This is a hoie of non-informative or vague or referene prior.Often, Bayesian inferene from suh a prior oinides with lassialinferene.In the Example then the posterior density of θ given x is
π(θ|x) =

π(θ)l(θ|x)∫
π(u)l(u|x) du

=
(n + 1)!x!(n − x)!θx(1− θ)n−x , 0 < θ < 1.As a funtion of θ, this is the same as the likelihood funtionl(θ|x) ∝ θx(1− θ)n−x , and so maximizing the posterior probabilitydensity will give the same estimate as the maximum likelihoodestimate!



In�uene of the PriorIf we had some knowledge about θ whih an be summarized in theform of a Beta prior distribution with parameters α and γ, theposterior will also be Beta with parameters x + α and n − x + γ.Suh priors whih result in posteriors from the same `family' arealled `natural onjugate priors'. Robustness?
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Robustness?Objetive Bayesian Analysis:Invariant priors: Je�reysReferene priors: Bernardo, Je�reysMaximum entropy priors: Jaynes



In Example 2, what π(θ|x) says is that the unertainty in θ annow be desribed in terms of an atual probability distributiononentrated around the maximum likelihood estimate θ̂ = x/n.However, the interpretation of θ̂ as an estimate of θ is quitedi�erent. It is the most probable value of the unknown parameter θonditional on the sample data x ; it is alled the `maximum aposteriori estimate (MAP)' or the `highest posterior densityestimate (HPD)'.There is no need to mimi the MLE anymore. We have a genuineprobability distribution, namely, the posterior distribution toquantify our post-experimental knowledge about θ. Indeed theusual Bayes estimate is the mean of the posterior distribution whihminimizes the posterior dispersion:E [(θ − θ̂B)2|x ] = mina E [(θ − a)2|x ],when θ̂B = E (θ|x).



If we hoose θ̂B as the estimate of θ, we get a natural measure ofvariability of this estimate in the form of the posterior variane:E [(θ − E (θ|x))2|x ]. Therefore the posterior standard deviation is anatural measure of estimation error. i.e., our estimate is
θ̂B ±√E [(θ − E (θ|x))2|x ].In fat, we an say muh more. For any interval around θ̂ we anompute the (posterior) probability of it ontaining the trueparameter θ. In other words, a statement suh asP(θ̂B − k1 ≤ θ ≤ θ̂B + k2|x) = 0.95is perfetly meaningful.All these inferenes are onditional on the given data.



In Example 2, if the prior is a Beta distribution with parameters αand γ, then θ|x will have a Beta(x + α, n − x + γ) distribution, sothe Bayes estimate of θ will be
θ̂B =

(x + α)

(n + α + γ)
=

nn + α + γ

xn +
α + γn + α + γ

α

α + γ
.This is a onvex ombination of sample mean and prior mean, withthe weights depending upon the sample size and the strength of theprior information as measured by the values of α and γ.Bayesian inferene relies on the onditional probability language torevise one's knowledge. In the above example, prior to theolletion of sample data one had some (vague, perhaps)information on θ. Then ame the sample data. Combining themodel density of this data with the prior density one gets theposterior density, the onditional density of θ given the data. Fromnow on until further data is available, this posterior distribution of

θ is the only relevant information as far as θ is onerned.



Outline1 Statistial Inferene2 Frequentist Statistis3 Conditioning on Data4 The Bayesian Reipe5 Inferene for Binomial proportion6 Inferene With Normals/Gaussians7 Bayesian Computations8 Empirial Bayes Methods for High Dimensional Problems9 Formal Methods for Model Seletion10 Bayesian Model Seletion11 Model Seletion or Model Averaging?12 Referenes



Inferene With Normals/GaussiansGaussian PDFf (x |µ, σ2) =
1√2πσ2 e− (x−µ)22σ2 over [−∞,∞] (6)Common abbreviated notation: X ∼ N(µ, σ2)Parameters

µ = E (X ) ≡ 〈X 〉 ≡ ∫ x f (x |µ, σ2) dx
σ2 = E (X − µ)2 ≡ 〈(X − µ)2〉 ≡ ∫ (x − µ)2 f (x |µ, σ2) dx



Inferene About a Normal MeanExample 4. Fit a normal/Gaussian model to the `globular lusterluminosity funtions' data. The set-up is as follows.Our data onsist of n measurements, Xi = µ + ǫi .Suppose the noise ontributions are independent, and
ǫi ∼ N(0, σ2). Denoting by x, the random sample (x1, . . . xn),f (x|µ, σ2) =

∏i f (xi |µ, σ2)
=

∏i 1√2πσ2 e− 12σ2 (xi−µ)2
= (2πσ2)−n/2e− 12σ2 Pni=1(xi−µ)2
= (2πσ2)−n/2e− 12σ2 [Pni=1(xi−x̄)2+n(x̄−µ)2].Note (X̄ , s2 =

∑ni=1(Xi − X̄ )2/(n − 1)) is su�ient for theparameters (µ, σ2). This is a very substantial data ompression.



Inferene About a Normal Mean, σ2 known(Not useful, but easy to understand.)l(µ|x) ∝ f (x|µ, σ2) ∝ e− n2σ2 (µ−x̄)2 ,so that X̄ is su�ient. Also, X̄ |µ ∼ N(µ, σ2/n). If an informativeprior, µ ∼ N(µ0, τ2) is hosen for µ,
π(µ|x) ∝ l(µ|x)π(µ)

∝ e− 12» n(µ−x̄)2
σ2 +

(µ−µ0)2
τ2 –

∝ e− τ2+σ2/n2τ2σ2/n „

µ− τ2σ2/n
τ2+σ2/n (

µ0
τ2 + nx̄

σ2 )

«2
.i.e., µ|x ∼ N(µ̂, δ2):

µ̂ =
τ2σ2/n

τ2 + σ2/n (
µ0
τ2 +

nx̄
σ2 )

=
τ2

τ2 + σ2/n x̄ +
σ2/n

τ2 + σ2/nµ0.



µ̂ is the Bayes estimate of µ, whih is just a weighted average ofsample mean x̄ and prior mean µ0.
δ2 is the posterior variane of µ and

δ2 =
τ2σ2/n

τ2 + σ2/n =
σ2n τ2

τ2 + σ2/n .Therefore µ̂± δ is our estimate for µ and µ̂± 2δ is a 95% HPD(Bayesian) redible interval for µ.What happens as τ2 →∞, or as the prior beomes more and more�at?
µ̂→ x̄ , δ → σ√ni.e., Je�reys' prior π(µ) = C reprodues frequentist inferene.



Inferene About a Normal Mean, σ2 unknownOur observations X1, . . .Xn is a random sample from a Gaussianpopulation with both mean µ and variane σ2 unknown.We are only interested in µ.How do we get rid of the nuisane parameter σ2?Bayesian inferene uses posterior distribution whih is a probabilitydistribution, so σ2 should be integrated out from the joint posteriordistribution of µ and σ2.l(µ, σ2|x) = (2πσ2)−n/2e− 12σ2 [Pni=1(xi−x̄)2+n(µ−x̄)2].Start with π(µ, σ2) and get
π(µ, σ2|x) ∝ π(µ, σ2)l(µ, σ2|x)and then get
π(µ|x) =

∫ ∞0 π(µ, σ2|x) dσ2.



Use Je�reys' prior π(µ, σ2) ∝ 1/σ2: Flat prior for µ whih is aloation or translation parameter, and an independent �at prior forlog(σ) whih is again a loation parameter, being the log of a saleparameter.
π(µ, σ2|x) ∝ 1

σ2 l(µ, σ2|x)
π(µ|x) ∝ ∫ ∞0 (σ2)−(n+1)/2e− 12σ2 [Pni=1(xi−x̄)2+n(µ−x̄)2] dσ2

∝
[
(n − 1)s2 + n(µ− x̄)2]−n/2

∝
[1 +

1n − 1 n(µ− x̄)2s2 ]−n/2
∝ density of Students tn−1.



√n(µ− x̄)s | data ∼ tn−1P(x̄ − tn−1(0.975) s√n ≤ µ ≤ x̄ + tn−1(0.975) s√n | data) = 95%i.e., the Je�reys' translation-sale invariant prior reproduesfrequentist inferene.What if there are some onstraints on µ suh as −A ≤ µ ≤ B , forexample, µ > 0? We will get a trunated tn−1 instead, but theproedure will go through with minimal hange.Example 4 ontd. (GCL Data) n = 360, x̄ = 14.46, s = 1.19.
√360(µ− 14.46)1.19 | data ∼ t359

µ| data ∼ N(14.46, 0.0632) approximately.
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Estimate for mean GCL is 14.46± 0.063 and 95% HPD redibleinterval is (14.33, 14.59).



Comparing two Normal MeansExample 5. Chek whether the mean distane indiators in thetwo populations of LMC datasets are di�erent. Model as follows:X1, . . .Xn1 is a random sample from N(µ1, σ21).Y1, . . .Yn2 is a random sample from N(µ2, σ22).Samples are independent.Unknown parameters: (µ1, µ2, σ21 , σ22)Quantity of interest: η = µ1 − µ2Nuisane parameters: σ21 and σ22Case 1. σ21 = σ22 . Then su�ient statisti for (µ1, µ2, σ2) is(X̄ , Ȳ , s2 = 1n1+n2−2 (∑n1i=1(Xi − X̄ )2 +
∑n2j=1(Yj − Ȳ )2))X̄ |µ1, µ2, σ2 ∼ N(µ1, σ2/n1), Ȳ |µ1, µ2, σ2 ∼ N(µ2, σ2/n2),

(n1 + n2 − 2)s2|µ1, µ2, σ2 ∼ σ2χ2n1+n2−2.These three are independently distributed.



X̄ − Ȳ |µ1, µ2, σ2 ∼ N(η, σ2( 1n1 + 1n2 )), η = µ1 − µ2Use Je�reys' loation-sale invariant prior π(µ1, µ2, σ2) ∝ 1/σ2
η|σ2, x, y ∼ N(x̄ − ȳ , σ2( 1n1 +

1n2 )), and
π(η, σ2|x, y) ∝ π(η|σ2, x, y)π(σ2|s2), (7)Integrate out σ2 from (7) as in the previous example to get

η − (x̄ − ȳ)s√ 1n1 + 1n2 | x, y ∼ tn1+n2−2.95% HPD redible interval for η = µ1 − µ2 isx̄ − ȳ ± tn1+n2−2(0.975)s√ 1n1 +
1n2 ,same as frequentist t-interval.



Example 5 ontd. We have x̄ = 18.539, ȳ = 18.473, n1 = 13,n2 = 12 and s2 = 0.0085. η̂ = x̄ − ȳ = 0.066, s√ 1n1 + 1n2 = 0.037,t23(0.975) = 2.069.95% HPD redible interval for η = µ1 − µ2:
(0.066− 2.069× 0.037, 0.066 + 2.069× 0.037) = (−0.011, 0.142).
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Case 2. σ21 and σ22 are not known to be equal.From the one-sample normal example, note that
(X̄ , s2X = 1n1−1∑n1i=1(Xi − X̄ )2) su�ient for (µ1, σ21), and
(Ȳ , s2Y = 1n2−1∑n2j=1(Yj − Ȳ )2) su�ient for (µ2, σ22).Making inferene on η = µ1 − µ2 when σ21 and σ22 are not assumedto be equal is alled the Behrens-Fisher problem for whih thefrequentist solution is not very straight forward, but the Bayessolution is.



X̄ |µ1, σ21 ∼ N(µ1, σ21/n1), (n1 − 1)s2X |µ1, σ21 ∼ σ2χ2n1−1, and areindependently distributed.Ȳ |µ2, σ22 ∼ N(µ2, σ22/n2), (n2 − 1)s2Y |µ2, σ22 ∼ σ2χ2n2−1, and areindependently distributed.X and Y samples are independent.Use Je�reys' prior π(µ1, µ2, σ21 , σ22) ∝ 1/σ21 × 1/σ22Calulations similar to those in one-sample ase give:
√n1(µ1 − x̄)sX | data ∼ tn1−1,
√n2(µ2 − ȳ)sY | data ∼ tn2−1, (8)and these two are independent.



Posterior distribution of η = µ1 − µ2 given the data is non-standard(di�erene of two independent t variables) but not di�ult to get.Use Monte-Carlo Sampling: Simply generate (µ1, µ2) repeatedlyfrom (8) and onstrut a histogram for η = µ1 − µ2Example 5 (LMC) ontd. Looks slightly di�erent.
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Posterior mean of η = µ1 − µ2 is
η̂ = E (µ1 − µ2| data) = 0.0656. (9)95% HPD redible interval for η = µ1 − µ2 is

=

{
(−0.011, 0.142) equal variane;
(−0.014, 0.147) unequal variane. (10)
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Bayesian ComputationsBayesian analysis requires omputation of expetations andquantiles of probability distributions (posterior distributions). Mostoften posterior distributions will not be standard distributions.Then posterior quantities of inferential interest annot be omputedin losed form. Speial tehniques are needed.Example M1. Suppose X1,X2, . . . ,Xk are observed number ofertain type of stars in k similar regions. Model them asindependent Poisson ounts: Xi ∼ Poisson(θi). θi are a priorionsidered related. νi = log(θi) is the ith element of ν and suppose
ν ∼ Nk (µ1, τ2 {(1− ρ)Ik + ρ11′}) ,where 1 is the k-vetor with all elements being 1, and µ, τ2 and ρare known onstants. Thenf (x |ν) = exp(− k∑i=1{eνi − νixi}) /

k∏i=1 xi !.



π(ν) ∝ exp(− 12τ2 (ν − µ1)′ ((1− ρ)Ik + ρ11′)−1
(ν − µ1))

π(ν|x) ∝exp{−∑ki=1{eνi − νixi} − (ν−µ1)′((1−ρ)Ik+ρ11′)−1
(ν−µ1)2τ2 }.To obtain the posterior mean of θj , omputeEπ(θj |x) = Eπ(exp(νj)|x) =

∫
Rk exp(νj)g(ν|x) dν∫

Rk g(ν|x) dν
,where g(ν|x) =exp{−∑ki=1{eνi − νixi} − (ν−µ1)′((1−ρ)Ik+ρ11′)−1

(ν−µ1)2τ2 }.



This is a ratio of two k-dimensional integrals, and as k grows, theintegrals beome less and less easy to work with. Numerialintegration tehniques fail to be an e�ient tehnique in this ase.This problem, known as the urse of dimensionality, is due to thefat that the size of the part of the spae that is not relevant forthe omputation of the integral grows very fast with the dimension.Consequently, the error in approximation assoiated with thisnumerial method inreases as the power of the dimension k ,making the tehnique ine�ient.The reent popularity of Bayesian approah to statistialappliations is mainly due to advanes in statistial omputing.These inlude the E-M algorithm and the Markov hain MonteCarlo (MCMC) sampling tehniques.



Monte Carlo SamplingConsider an expetation that is not available in losed form. Toestimate a population mean, gather a large sample from thispopulation and onsider the orresponding sample mean. The Lawof Large Numbers guarantees that the estimate will be goodprovided the sample is large enough. Spei�ally, let f be aprobability density funtion (or a mass funtion) and suppose thequantity of interest is a �nite expetation of the formEf h(X ) =

∫

X
h(x)f (x) dx (11)(or the orresponding sum in the disrete ase). If i.i.d.observations X 1,X 2, . . . an be generated from the density f , thenh̄m =

1m m∑i=1 h(X i) (12)onverges in probability to Ef h(X ). This justi�es using h̄m as anapproximation for Ef h(X ) for large m.



To provide a measure of auray or the extent of error in theapproximation, ompute the standard error. If Varf h(X ) is �nite,then Varf (h̄m) = Varf h(X )/m. Further,Varf h(X ) = Ef h2(X )−
(Ef h(X )

)2 an be estimated bys2m =
1m m∑i=1(h(X i)− h̄m)2,and hene the standard error of h̄m an be estimated by1√msm =
1m( m∑i=1(h(X i)− h̄m)2)1/2.Con�dene intervals for Ef h(X ): Using CLT

√m (h̄m − Ef h(X )
)sm −→m→∞

N(0, 1), so
(h̄m − zα/2sm/

√m, h̄m + zα/2sm/
√m) an be used as anapproximate 100(1− α)% on�dene interval for Ef h(X ), withzα/2 denoting the 100(1− α/2)% quantile of standard normal.



What Does This Say?If we want to approximate the posterior mean, try to generate i.i.d.observations from the posterior distribution and onsider the meanof this sample. This is rarely useful beause most often theposterior distribution will be a non-standard distribution whih maynot easily allow sampling from it. What are some other possibilities?Example M2. Suppose X is N(θ, σ2) with known σ2 and aCauhy(µ, τ) prior on θ is onsidered appropriate. Then
π(θ|x) ∝ exp (−(θ − x)2/(2σ2)) (τ2 + (θ − µ)2)−1

,and hene the posterior mean isEπ(θ|x) =

∫∞
−∞ θ exp(− (θ−x)22σ2 ) (τ2 + (θ − µ)2)−1 dθ

∫∞
−∞ exp(− (θ−x)22σ2 ) (τ2 + (θ − µ)2)−1 dθ

=

∫∞
−∞ θ

{ 1
σφ
(

θ−x
σ

)} (
τ2 + (θ − µ)2)−1 dθ

∫∞
−∞

{ 1
σφ
(

θ−x
σ

)}
(τ2 + (θ − µ)2)−1 dθ

,where φ denotes the density of standard normal.



Eπ(θ|x) is the ratio of expetation of h(θ) = θ/(τ2 + (θ − µ)2) tothat of h(θ) = 1/(τ2 + (θ − µ)2), both expetations being withrespet to the N(x , σ2) distribution. Therefore, we simply sample
θ1, θ2, . . . from N(x , σ2) and useÊπ(θ|x) =

∑mi=1 θi (τ2 + (θi − µ)2)−1
∑mi=1 (τ2 + (θi − µ)2)−1as our Monte Carlo estimate of Eπ(θ|x). Note that (11) and (12)are applied separately to both the numerator and denominator, butusing the same sample of θ's. It is unwise to assume that theproblem has been ompletely solved. The sample of θ's generatedfrom N(x , σ2) will tend to onentrate around x , whereas tosatisfatorily aount for the ontribution of the Cauhy prior tothe posterior mean, a signi�ant portion of the θ's should omefrom the tails of the posterior distribution.



Why not express the posterior mean in the formEπ(θ|x) =

∫∞
−∞ θ exp(− (θ−x)22σ2 )π(θ) dθ

∫∞
−∞ exp(− (θ−x)22σ2 )π(θ) dθ

,and then sample θ's from Cauhy(µ, τ) and use the approximationÊπ(θ|x) =

∑mi=1 θi exp(− (θi−x)22σ2 )

∑mi=1 exp(− (θi−x)22σ2 ) ?However, this is also not satisfatory beause the tails of theposterior distribution are not as heavy as those of the Cauhy prior,and there will be exess sampling from the tails relative to theenter. So the onvergene of the approximation will be slowerresulting in a larger error in approximation (for a �xed m). Ideally,therefore, sampling should be from the posterior distribution itself.With this view in mind, a variation of the above theme, alledMonte Carlo importane sampling has been developed.



Consider (11) again. Suppose that it is di�ult or expensive tosample diretly from f , but there exists a probability density u thatis very lose to f from whih it is easy to sample. Then we anrewrite (11) asEf h(X ) =

∫

X
h(x)f (x) dx =

∫

X
h(x)

f (x)u(x)
u(x) dx

=

∫

X
{h(x)w(x)} u(x) dx = Eu {h(X )w(X )} ,where w(x) = f (x)/u(x). Now apply (12) with f replaed by uand h replaed by hw . In other words, generate i.i.d. observationsX 1,X 2, . . . from the density u and omputehwm =

1m m∑i=1 h(X i)w(X i).The sampling density u is alled the importane funtion.



Markov Chain Monte Carlo MethodsA severe drawbak of the standard Monte Carlo sampling/importane sampling: omplete determination of the funtionalform of the posterior density is needed for implementation.Situations where posterior distributions are inompletely spei�edor are spei�ed indiretly annot be handled: joint posteriordistribution of the vetor of parameters is spei�ed in terms ofseveral onditional and marginal distributions, but not diretly.This overs a large range of Bayesian analysis beause a lot ofBayesian modeling is hierarhial so that the joint posterior isdi�ult to alulate but the onditional posteriors given parametersat di�erent levels of hierarhy are easier to write down (and henesample from).



Markov Chains in MCMCA sequene of random variables {Xn}n≥0 is a Markov hain if forany n, given the urrent value, Xn, the past {Xj , j ≤ n− 1} and thefuture {Xj : j ≥ n + 1} are independent. In other words,P(A ∩ B|Xn) = P(A|Xn)P(B|Xn), (13)where A and B are events de�ned respetively in terms of the pastand the future.Important sublass: Markov hains with time homogeneous orstationary transition probabilities: the probability distribution ofXn+1 given Xn = x , and the past, Xj : j ≤ n − 1 depends only on xand does not depend on the values of Xj : j ≤ n − 1 or n.If the set S of values {Xn} an take, known as the state spae, isountable, this redues to speifying the transition probabilitymatrix P ≡ ((pij)) where for any two values i , j in S , pij is theprobability that Xn+1 = j given Xn = i , i.e., of moving from state ito state j in one time unit.



For state spae S that is not ountable, speify a transition kernelor transition funtion P(x , ·) where P(x ,A) is the probability ofmoving from x into A in one step, i.e., P(Xn+1 ∈ A|Xn = x).Given the transition probability and the probability distribution ofthe initial value X0, one an onstrut the joint probabilitydistribution of {Xj : 0 ≤ j ≤ n} for any �nite n. i.e.,P(X0 = i0,X1 = i1, . . . ,Xn−1 = in−1,Xn = in)
= P(Xn = in|X0 = i0, . . . ,Xn−1 = in−1)
×P(X0 = i0,X1 = i1, . . .Xn−1 = in−1)

= pin−1inP(X0 = i0, . . . ,Xn−1 = in−1)
= P(X0 = i0)pi0i1pi1i2 . . . pin−1in .



A probability distribution π is alled stationary or invariant for atransition probability P or the assoiated Markov hain {Xn} if it isthe ase that when the probability distribution of X0 is π then thesame is true for Xn for all n ≥ 1. Thus in the ountable state spaease a probability distribution π = {πi : i ∈ S} is stationary for atransition probability matrix P if for eah j in S ,P(X1 = j) =
∑i P(X1 = j |X0 = i)P(X0 = i)

=
∑i πipij = P(X0 = j) = πj . (14)In vetor notation it says π = (π1, π2, . . .) is a left eigenvetor ofthe matrix P with eigenvalue 1 and
π = πP. (15)



Similarly, if S is a ontinuum, a probability distribution π withdensity p(x) is stationary for the transition kernel P(·, ·) if
π(A) =

∫A p(x) dx =

∫S P(x ,A)p(x) dxfor all A ⊂ S .A Markov hain {Xn} with a ountable state spae S and transitionprobability matrix P ≡ ((pij)) is said to be irreduible if for any twostates i and j the probability of the Markov hain visiting j startingfrom i is positive, i.e., for somen ≥ 1, p(n)ij ≡ P(Xn = j |X0 = i) > 0.A similar notion of irreduibility, known as Harris or Doeblinirreduibility exists for the general state spae ase also.



Theorem (Law of Large Lumbers for Markov Chains).
{Xn}n≥0 is a Markov hain with a ountable state spae S and atransition probability matrix P . Suppose it is irreduible and has astationary probability distribution π ≡ (πi : i ∈ S) as de�ned in(14). Then, for any bounded funtion h : S → R and for any initialdistribution of X0 1n n−1∑i=0 h(Xi )→∑j h(j)πj (16)in probability as n →∞.A similar law of large numbers (LLN) holds when the state spae Sis not ountable. The limit value in (16) will be the integral of hwith respet to the stationary distribution π. A su�ient onditionfor the validity of this LLN is that the Markov hain {Xn} be Harrisirreduible and have a stationary distribution π.



How is this Useful?A probability distribution π on a set S is given. Want to omputethe �integral of h with respet to π�, whih redues to ∑j h(j)πj inthe ountable ase.Look for an irreduible Markov hain {Xn} with state spae S andstationary distribution π. Starting from some initial value X0, runthe Markov hain {Xj} for a period of time, say 0, 1, 2, . . . n − 1and onsider as an estimate
µn =

1n n−1∑0 h(Xj). (17)By the LLN (16), µn will be lose to ∑j h(j)πj for large n.This tehnique is alled Markov hain Monte Carlo (MCMC).To approximate π(A) ≡
∑j∈A πj for some A ⊂ S simply onsider

πn(A) ≡ 1n n−1∑0 IA(Xj)→ π(A),where IA Xj 1 if Xj A and 0 otherwise.



An irreduible Markov hain {Xn} with a ountable state spae S isalled aperiodi if for some i ∈ S the greatest ommon divisor,g..d. {n : p(n)ii > 0} = 1. Then, in addition to the LLN (16), thefollowing result on the onvergene of P(Xn = j) holds.
∑j |P(Xn = j)− πj | → 0 (18)as n →∞, for any initial distribution of X0. In other words, forlarge n the probability distribution of Xn will be lose to π. Thereexists a result similar to (18) for the general state spae ase also.This suggests that instead of doing one run of length n, one oulddo N independent runs eah of length m so that n = Nm and thenfrom the i th run use only the mth observation, say, Xm,i andonsider the estimatẽ
µN,m ≡ 1N N∑i=1 h(Xm,i). (19)



Metropolis-Hastings AlgorithmVery general MCMC method with wide appliations. Idea is not todiretly simulate from the given target density (whih may beomputationally di�ult), but to simulate an easy Markov hainthat has this target density as the stationary distribution.Let π be the target probability distribution on S , a �nite orountable set. Let Q ≡ ((qij)) be a transition probability matrixsuh that for eah i , it is omputationally easy to generate asample from the distribution {qij : j ∈ S}. Generate a Markovhain {Xn} as follows. If Xn = i , �rst sample from the distribution
{qij : j ∈ S} and denote that observation Yn. Then, hoose Xn+1from the two values Xn and Yn aording toP(Xn+1 = Yn|Xn,Yn) = ρ(Xn,Yn) = 1− P(Xn+1 = Xn|Xn,Yn),where the �aeptane probability� ρ(·, ·) is given by

ρ(i , j) = min{πj
πi qjiqij , 1} for all (i , j) suh that πiqij > 0.



{Xn} is a Markov hain with transition probability matrixP = ((pij)) given bypij =

{ qijρij j 6= i ,1− ∑k 6=i pik , j = i . (20)Q is alled the �proposal transition probability� and ρ the�aeptane probability�. A signi�ant feature of this transitionmehanism P is that P and π satisfy
πipij = πjpji for all i , j . (21)This implies that for any j
∑i πipij = πj∑i pji = πj , (22)or, π is a stationary probability distribution for P .



Suppose S is irreduible with respet to Q and πi > 0 for all i in S .It an then be shown that P is irreduible, and beause it has astationary distribution π, LLN (16) is available. This algorithm isthus a very �exible and useful one. The hoie of Q is subjet onlyto the ondition that S is irreduible with respet to Q. A su�ientondition for the aperiodiity of P is that pii > 0 for some i orequivalently ∑j 6=1 qijρij < 1.A su�ient ondition for this is that there exists a pair (i , j) suhthat πiqij > 0 and πjqji < πiqij .Reall that if P is aperiodi, then both the LLN (16) and (18) hold.



If S is not �nite or ountable but is a ontinuum and the targetdistribution π(·) has a density p(·), then one proeeds as follows:Let Q be a transition funtion suh that for eah x , Q(x , ·) has adensity q(x , y). Then proeed as in the disrete ase but set the�aeptane probability� ρ(x , y) to be
ρ(x , y) = min{p(y)q(y , x)p(x)q(x , y)

, 1}for all (x , y) suh that p(x)q(x , y) > 0.A partiularly useful feature of the above algorithm is that it isenough to know p(·) upto a multipliative onstant as the�aeptane probability� ρ(·, ·) needs only the ratios p(y)/p(x) or
πi/πj .This assures us that in Bayesian appliations it is not neessary tohave the normalizing onstant of the posterior density available foromputation of the posterior quantities of interest.



Gibbs SamplingMost of the new problems that Bayesians are asked to solve arehigh-dimensional: e.g. miro-arrays, image proessing. Bayesiananalysis of suh problems involve target (posterior) distributionsthat are high-dimensional multivariate distributions.In image proessing, typially one has N × N square grid of pixelswith N = 256 and eah pixel has k ≥ 2 possible values. Eahon�guration has (256)2 omponents and the state spae S hask(256)2 on�gurations. How does one simulate a randomon�guration from a target distribution over suh a large S?Gibbs sampler is a tehnique espeially suitable for generating anirreduible aperiodi Markov hain that has as its stationarydistribution a target distribution in a high-dimensional spae havingsome speial struture.The most interesting aspet of this tehnique: to run this Markovhain, it su�es to generate observations from univariatedistributions.



The Gibbs sampler in the ontext of a bivariate probabilitydistribution an be desribed as follows. Let π be a targetprobability distribution of a bivariate random vetor (X ,Y ). Foreah x , let P(x , ·) be the onditional probability distribution of Ygiven X = x . Similarly, let Q(y , ·) be the onditional probabilitydistribution of X given Y = y . Note that for eah x , P(x , ·) is aunivariate distribution, and for eah y , Q(y , ·) is also a univariatedistribution. Now generate a bivariate Markov hain Zn = (Xn,Yn)as follows:Start with some X0 = x0. Generate an observation Y0 from thedistribution P(x0, ·). Then generate an observation X1 fromQ(Y0, ·). Next generate an observation Y1 from P(X1, ·) and so on.At stage n if Zn = (Xn,Yn) is known, then generate Xn+1 fromQ(Yn, ·) and Yn+1 from P(Xn+1, ·).



If π is a disrete distribution onentrated on
{(xi , yj) : 1 ≤ i ≤ K , 1 ≤ j ≤ L} and if πij = π(xi , yj) thenP(xi , yj) = πij/πi · and Q(yj , xi ) = πij/π·j , where
πi · =

∑j πij , π·j =
∑i πij . Thus the transition probability matrixR = ((r(ij),(kℓ))) for the {Zn} hain is given byr(ij),(kℓ) = Q(yj , xk)P(xk , yℓ)

=
πkj
π·j πkℓ

πk· .Verify that this hain is irreduible, aperiodi, and has π as itsstationary distribution. Thus LLN (16) and (18) hold in this ase.Thus for large n, Zn an be viewed as a sample from a distributionthat is lose to π and one an approximate ∑i ,j h(i , j)πij by∑n1=1 h(Xi ,Yi)/n.



Illustration: Consider sampling from( XY )
∼ N2(( 00 ), [ 1 ρ

ρ 1 ]). The onditional distribution of Xgiven Y = y and that of Y given X = x areX |Y = y ∼ N(ρy , 1− ρ2) and Y |X = x ∼ N(ρx , 1− ρ2). (23)Using this property, Gibbs sampling proeeds as follows: Generate
(Xn,Yn), n = 0, 1, 2, . . ., by starting from an arbitrary value x0 forX0, and repeat the following steps for i = 0, 1, . . . , n.1 Given xi for X , draw a random deviate from N(ρxi , 1− ρ2)and denote it by Yi .2 Given yi for Y , draw a random deviate from N(ρyi , 1− ρ2)and denote it by Xi+1.The theory of Gibbs sampling tells us that if n is large, then (xn, yn)is a random draw from a distribution that is lose toN2(( 00 ),

[ 1 ρ
ρ 1 ]).



Multivariate extension: π is a probability distribution of ak-dimensional random vetor (X1,X2, . . . ,Xk). Ifu = (u1, u2, . . . , uk) is any k-vetor, letu−i = (u1, u2, . . . , ui−1, ui+1, . . . , uk) be the k − 1 dimensionalvetor resulting by dropping the ith omponent ui . Let πi(·|x−i)denote the univariate onditional distribution of Xi given thatX−i ≡ (X1,X2,Xi−1,Xi+1, . . . ,Xk) = x−i . Starting with someinitial value for X 0 = (x01, x02, . . . , x0k ) generateX 1 = (X11,X12, . . . ,X1k) sequentially by generating X11 aordingto the univariate distribution π1(·|x0−1) and then generating X12aording to π2(·|(X11, x03, x04, . . . , x0k ) and so on.The most important feature to reognize here is that all theunivariate onditional distributions, Xi |X−i = x−i , known as fullonditionals should easily allow sampling from them. This is thease in most hierarhial Bayes problems. Thus, the Gibbs sampleris partiularly well adapted for Bayesian omputations withhierarhial priors.



Rao-BlakwellizationThe variane redution idea of the famous Rao-Blakwell theoremin the presene of auxiliary information an be used to provideimproved estimators when MCMC proedures are adopted.Theorem (Rao-Blakwell) Let δ(X1,X2, . . . ,Xn) be an estimatorof θ with �nite variane. Suppose that T is su�ient for θ, and let
δ∗(T ), de�ned by δ∗(t) = E (δ(X1,X2, . . . ,Xn)|T = t), be theonditional expetation of δ(X1,X2, . . . ,Xn) given T = t. ThenE (δ∗(T )− θ)2 ≤ E (δ(X1,X2, . . . ,Xn)− θ)2.The inequality is strit unless δ = δ∗, or equivalently, δ is already afuntion of T .



By the property of iterated onditional expetation,E (δ∗(T )) = E [E (δ(X1,X2, . . . ,Xn)|T )] = E (δ(X1,X2, . . . ,Xn)).Therefore, to ompare the mean squared errors (MSE) of the twoestimators, ompare their varianes only. Now,Var(δ(X1,X2, . . . ,Xn)) = Var [E (δ|T )] + E [Var(δ|T )]

= Var(δ∗) + E [Var(δ|T )] > Var(δ∗),unless Var(δ|T ) = 0, whih is the ase only if δ is a funtion of T .The Rao�Blakwell theorem involves two key steps: varianeredution by onditioning and onditioning by a su�ient statisti.The �rst step is based on the analysis of variane formula: For anytwo random variables S and T , beauseVar(S) = Var(E (S |T )) + E (Var(S |T )),one an redue the variane of a random variable S by takingonditional expetation given some auxiliary information T . Thisan be exploited in MCMC.



(Xj ,Yj), j = 1, 2, . . . ,N: a single run of the Gibbs sampleralgorithm with a target distribution of a bivariate random vetor
(X ,Y ). Let h(X ) be a funtion of the X omponent of (X ,Y ) andlet its mean value be µ. Goal is to estimate µ. A �rst estimate isthe sample mean of the h(Xj), j = 1, 2, . . . ,N. From the MCMCtheory, as N →∞, this estimate will onverge to µ in probability.The omputation of variane of this estimator is not easy due tothe (Markovian) dependene of the sequene {Xj , j = 1, 2, . . . ,N}.Suppose we make n independent runs of Gibbs sampler andgenerate (Xij ,Yij), j = 1, 2, . . . ,N; i = 1, 2, . . . , n. Suppose that Nis su�iently large so that (XiN ,YiN) an be regarded as a samplefrom the limiting target distribution of the Gibbs sampling sheme.Thus (XiN ,YiN), i = 1, 2, . . . , n form a random sample from thetarget distribution. Consider a seond estimate of µ�the samplemean of h(XiN), i = 1, 2, . . . , n.



This estimator ignores part of the MCMC data but has theadvantage that the variables h(XiN), i = 1, 2, . . . , n areindependent and hene the variane of their mean is of order n−1.Now applying the variane redution idea of the Rao-Blakwelltheorem by using the auxiliary information YiN , i = 1, 2, . . . , n, onean improve this estimator as follows:Let k(y) = E (h(X )|Y = y). Then for eah i , k(YiN) has a smallervariane than h(XiN) and hene the following third estimator,1n n∑i=1 k(YiN),has a smaller variane than the seond one. A ruial fat to keepin mind here is that the exat funtional form of k(y) be availablefor implementing this improvement.



(Example M2 ontinued.) X |θ ∼ N(θ, σ2) with known σ2 and
θ ∼ Cauhy(µ, τ). Simulate θ from the posterior distribution, butsampling diretly is di�ult.Gibbs sampling: Cauhy is a sale mixture of normal densities, withthe sale parameter having a Gamma distribution.
π(θ) ∝

(
τ2 + (θ − µ)2)−1

∝
∫ ∞0 (

λ2πτ2 )1/2 exp(− λ2τ2 (θ − µ)2)λ1/2−1 exp(−λ2 ) dλ,so that π(θ) may be onsidered the marginal prior density from thejoint prior density of (θ, λ) where
θ|λ ∼ N(µ, τ2/λ) and λ ∼ Gamma(1/2, 1/2).This impliit hierarhial prior struture implies: π(θ|x) is themarginal density from π(θ, λ|x).



Full onditionals of π(θ, λ|x) are standard distributions:
θ|λ, x ∼ N ( τ2

τ2 + λσ2 x +
λσ2

τ2 + λσ2µ,
τ2σ2

τ2 + λσ2) , (24)
λ|θ, x ∼ λ|θ ∼ Exponential(τ2 + (θ − µ)22τ2 )

. (25)Thus, the Gibbs sampler will use (24) and (25) to generate (θ, λ)from π(θ, λ|x).



Example M5. X = number of defetives in the daily prodution ofa produt. (X | Y , θ) ∼ binomial(Y , θ), where Y , a day'sprodution, is Poisson with known mean λ, and θ is the probabilitythat any produt is defetive. The di�ulty is that Y is notobservable, and inferene has to be made on the basis of X only.Prior: (θ | Y = y) ∼ Beta(α, γ), with known α and γ independentof Y . Bayesian analysis here is not di�ult beause the posteriordistribution of θ|X = x an be obtained as follows. First,X |θ ∼ Poisson(λθ). Next, θ ∼ Beta(α, γ). Therefore,
π(θ|X = x) ∝ exp(−λθ)θx+α−1(1− θ)γ−1, 0 < θ < 1. (26)This is not a standard distribution, and hene posterior quantitiesannot be obtained in losed form. Instead of fousing on θ|Xdiretly, view it as a marginal omponent of (Y , θ | X ). Chek thatthe full onditionals of this are given byY |X = x , θ ∼ x + Poisson(λ(1− θ)), and

θ|X = x ,Y = y ∼ Beta(α + x , γ + y − x)both of whih are standard distributions.



Example M5 ontinued. It is atually possible here to samplefrom the posterior distribution using the aept-rejet Monte Carlomethod:Let g(x)/K be the target density, where K is the possibly unknownnormalizing onstant of the unnormalized density g . Suppose h(x)is a density that an be simulated by a known method and is loseto g , and suppose there exists a known onstant  > 0 suh thatg(x) < h(x) for all x . Then, to simulate from the target density,the following two steps su�e. Step 1. Generate Y ∼ h andU ∼ U(0, 1);Step 2. Aept X = Y if U ≤ g(Y )/{h(Y )}; return to Step 1otherwise.The optimal hoie for  is sup{g(x)/h(x).



In Example M5, from (26),g(θ) = exp(−λθ)θx+α−1(1− θ)γ−1I{0 ≤ θ ≤ 1},so that h(θ) may be hosen to be the density of Beta(x + α, γ).Then, with the above-mentioned hoie for  , if θ ∼ Beta(x + α, γ)is generated in Step 1, its `aeptane probability' in Step 2 issimply exp(−λθ).Even though this method works here, let us see how theMetropolis-Hastings algorithm an be applied.The required Markov hain is generated by taking the transitiondensity q(z , y) = q(y |z) = h(y), independently of z . Then theaeptane probability is
ρ(z , y) = min{g(y)h(z)g(z)h(y)

, 1}
= min {exp (−λ(y − z)) , 1} .



The steps involved in this �independent� M-H algorithm are:Start at t = 0 with a value x0 in the support of the targetdistribution; in this ase, 0 < x0 < 1. Given xt , generate the nextvalue in the hain as given below.(a) Draw Yt from Beta(x + α, γ).(b) Let x(t+1) =

{ Yt with probability ρtxt otherwise,where ρt = min{exp (−λ(Yt − xt)) , 1}.() Set t = t + 1 and go to step (a).Run this hain until t = n, a suitably hosen large integer. In ourexample, for x = 1, α = 1, γ = 49 and λ = 100, we simulated suha Markov hain. The resulting frequeny histogram is shown inFigure below, with the true posterior density super-imposed on it.



Figure: M-H frequeny histogram and true posterior density.
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Empirial Bayes Methods for High DimensionalProblemsThis is beoming popular again, this time for `high dimensional'problems. Astronomers routinely estimate harateristis of millionsof similar astronomial objets � distane, radial veloity whatever.Consider the data:
(X1 =





X11X12...X1n  ,X2 =





X21X22...X2n  , · · ·Xp =





Xp1Xp2...Xpn ).Xj represents n repeated independent observations on the jthobjet, j = 1, 2, . . . p. The important point is n is small, 2, 5, or 10,whereas p is large, suh as a million.Suppose Xj1, . . .Xjn measure µj with variability σ2.Problem: Maximum likelihood an give wrong estimates



Take n = 2 and suppose
( Xj1Xj2 ) ∼ N (( µj

µj ) ,

(
σ2 00 σ2 )) , j = 1, 2, . . . p.i.e., we measure µj with 2 independent measurements, eah omingwith a N(0, σ2) error added to it; we do this for a very largenumber p of objets. What is the MLE of σ2?l(µ1, . . . µp; σ2|x1, . . . xp) = f (x1, . . . xp|µ1, . . . µp; σ2)

=

p∏j=1 2∏i=1 f (xji |µj , σ2)
= (2πσ2)−p exp(− 12σ2 p∑j=1 2∑i=1(xji − µj)2)
= (2πσ2)−p exp(− 12σ2 p∑j=1 [ 2∑i=1(xji − x̄j)2 + 2(x̄j − µj)2]).



µ̂j = x̄j = (xj1 + xj2)/2 and
σ̂2 =

12p p∑j=1 2∑i=1(xji − x̄j)2
=

12p p∑j=1 [(xj1 − xj1 + xj22 )2
+

(xj2 − xj1 + xj22 )2]
=

12p p∑j=1 2(xj1 − xj2)24 =
14p p∑j=1(xj1 − xj2)2.Sine Xj1 − Xj2 ∼ N(0, 2σ2), j = 1, 2 . . .,1p p∑j=1(Xj1 − Xj2)2 P−→p→∞

2σ2, so that
σ̂2 =

14p p∑j=1(Xj1 − Xj2)2 P−→p→∞
σ22 , and not σ2.



Good estimates for σ2 do exist, for example,12p p∑j=1(Xj1 − Xj2)2 P−→p→∞
2σ2.What is going wrong here?This is not a small p, large n problem, but a small n, large pproblem. i.e. a high dimensional problem, so needs are!As p →∞, there are too many parameters to estimate and thelikelihood funtion is unable to see where information lies, so triesto distribute it everywhere.What is the way out? Go Bayesian!



There is a lot of information available on σ2 (note∑pj=1(Xj1 − Xj2)2 ∼ 2σ2χ2p) but very little on individual µj .However, if µj are `similar', there is a lot of information on wherethey ome from, beause we get to see p samples, p large.Suppose we are interested in µj . How an we use the aboveinformation? Model as follows:X̄j |µj , σ2 ∼ N(µj , σ2/2), j = 1, . . . p, independent observations.
σ2 may be assumed known, sine a reliable estimate
σ̂2 = 12p ∑pj=1(Xj1 − Xj2)2 is available. Express the informationthat µj are `similar' in the form:
µj , j = 1, . . . p is a random sample (olletion) from N(η, τ2).Where do we get the η and τ2, the prior mean and prior variane?Marginally (or in preditive sense) X̄j , j = 1, . . . p is a randomsample from N(µ0, τ2 + σ2/2). Use this random sample.



Estimate η by η̂ = ¯̄X = 1p ∑ X̄j and τ2 by
τ̂2 =

( 1p−1∑pj=1(X̄j − ¯̄X )2 − σ2/2)+.Now one ould pretend that the prior for (µ1, . . . µp) is N(η̂, τ̂2)and ompute the Bayes estimates for µj :E (µj |X1, . . .Xp) = (1− B̂)X̄j + B̂ ¯̄X ,where B̂ = σ2/2
σ2/2+τ̂2 . If instead of 2 observations, eah sample has nobservations, replae 2 by n. This is alled Empirial Bayes sinethe prior is estimated using data. There is also a fully Bayesianounter-part alled Hierarhial Bayes.
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Formal Methods for Model SeletionWhat is the best model for Gamma-ray burst afterglow?Consider a simpler, abstrat problem instead.Suppose X having density f (x |θ) is observed, with θ being anunknown element of the parameter spae Θ. We are interested inomparing two models M0 and M1:M0 : X has density f (x |θ) where θ ∈ Θ0;M1 : X has density f (x |θ) where θ ∈ Θ1. (27)Simplify even further, and assume we want to testM0 : θ = θ0 versus M1 : θ 6= θ0, (28)Frequentist: A (lassial) signi�ane test is derived. It is based ona test statisti T (X ), large values of whih are deemed to provideevidene against the null hypothesis, M0. If data X = x isobserved, with orresponding t = T (x), the P-value is
α = Pθ0 (T (X ) ≥ T (x)) .



Example 6. Consider a random sample X1, . . . ,Xn from N(θ, σ2),where σ2 is known. Then X̄ is su�ient for θ and it has theN(θ, σ2/n) distribution. Noting thatT = T (X̄ ) = |√n (X̄ − θ0) /σ| is a natural test statisti to test(28), one obtains the usual P-value as α = 2[1− Φ(t)], wheret = |√n (x̄ − θ0) /σ| and Φ is the standard normal umulativedistribution funtion.What is a P-value and what does it say? P-value is the probabilityunder a (simple) null hypothesis of obtaining a value of a teststatisti that is at least as extreme as that observed in the sampledata.To ompute a P-value we take the observed value of the teststatisti to the referene distribution and hek if it is likely orunlikely under M0.



χ2 Goodness-of-�t testExample 7. Rutherford and Geiger (1910) gave the followingobserved numbers of intervals of 1/8 minute when 0, 1, . . .
α-partiles are ejeted by a speimen. Chek if Poisson �ts well.Number 0 1 2 3 4 5Obs. 57 203 383 525 532 408Exp. 54 211 407 525 508 393Number 6 7 8 9 10 11 12 or moreObs. 273 139 45 27 10 4 2Exp. 254 140 68 29 11 4 1Test statisti: T =

k∑j=1 (Oi − Ei)2Ei ∼ χ2k−2 approximately for large n,where k is the number of ells, Oi is the observed and Ei is theexpeted ount (estimated) for the ith ell.



Estimated Poisson intensity rate = (total number of partilesejeted)/(total number of intervals) = 100097/2608 =3.87.k = 13.P-value = P(T ≥ 14.03) ≈ 0.21 (under χ211).Likelihood Ratio CriterionStandard likelihood ratio riterion for omparing M0 and M1 is
λn =

f (x|θ̂0)f (x|θ̂) =
maxθ∈Θ0 f (x|θ)maxθ∈Θ0∪Θ1 f (x|θ) . (29)0 < λn ≤ 1, and large values of λn provide evidene for M0.Rejet M0 for small values.Use λn (or a funtion of λn) as a test statisti if its distributionunder M0 an be derived. Otherwise, use the large sample result:

−2 log(λn) L−→n→∞
χ2p1−p0 ,under M0 where p0 and p1 are dimensions of Θ0 and Θ0 ∪Θ1.
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Bayesian Model SeletionHow does the Bayesian approah work?X ∼ f (x |θ) and we want to testM0 : θ ∈ Θ0 versus M1 : θ ∈ Θ1. (30)If Θ0 and Θ1 are of the same dimension (eg: M0 : θ ≤ 0 andM1 : θ > 0), hoose a prior density that assigns positive priorprobability to Θ0 and Θ1. Then alulate the posterior probabilitiesP{Θ0|x}, P{Θ1|x} as well as the posterior odds ratio, namely,P{Θ0|x}/P{Θ1|x}.Find a threshold like 1/9 or 1/19, et. to deide what onstitutesevidene against H0.Alternatively, let π0 and 1− π0 be the prior probabilities of Θ0 and
Θ1. Let gi (θ) be the prior p.d.f. of θ under Θi (or Mi), so that

∫

Θi gi (θ)dθ = 1.



The prior in the previous approah is nothing but
π(θ) = π0g0(θ)I{θ ∈ Θ0}+ (1− π0)g1(θ)I{θ ∈ Θ1}.Need not require any longer that Θ0 and Θ1 are of the samedimension. Sharp null hypotheses are also overed. Proeed asbefore and report posterior probabilities or posterior odds. Toompute these posterior quantities, note that the marginal densityof X under the prior π an be expressed asmπ(x) =

∫

Θ
f (x |θ)π(θ) dθ

= π0 ∫
Θ0 f (x |θ)g0(θ) dθ + (1− π0)∫

Θ1 f (x |θ)g1(θ) dθand hene the posterior density of θ given the data X = x as
π(θ|x) =

f (x |θ)π(θ)mπ(x) =

{
π0f (x |θ)g0(θ)/mπ(x) if θ ∈ Θ0;

(1− π0)f (x |θ)g1(θ)/mπ(x) if θ ∈ Θ1.



It follows then thatPπ(M0|x) = Pπ(Θ0|x) =
π0mπ(x) ∫Θ0 f (x |θ)g0(θ) dθ

=
π0 ∫Θ0 f (x |θ)g0(θ) dθ

π0 ∫Θ0 f (x |θ)g0(θ) dθ + (1− π0) ∫Θ1 f (x |θ)g1(θ) dθ
;Pπ(M1|x) = Pπ(Θ1|x) =

(1− π0)mπ(x) ∫

Θ1 f (x |θ)g1(θ) dθ

=
(1− π0) ∫Θ1 f (x |θ)g1(θ) dθ

π0 ∫Θ0 f (x |θ)g0(θ) dθ + (1− π0) ∫Θ1 f (x |θ)g1(θ) dθ
.One may also report the Bayes fator, whih does not depend on

π0. The Bayes fator of M0 relative to M1 is de�ned asBF01 =
P(Θ0|x)P(Θ1|x)

/P(Θ0)P(Θ1) =

∫
Θ0 f (x |θ)g0(θ) dθ
∫
Θ1 f (x |θ)g1(θ) dθ

. (31)



Note:
• BF10 = 1/BF01.
• Posterior odds ratio of M0 relative to M1:P(Θ0|x)P(Θ1|x)

=

(
π01− π0)BF01.

• Posterior odds ratio of M0 relative to M1 = BF01 if π0 = 12 .
• The smaller the value of BF01, the stronger the evideneagainst M0.Testing as a model seletion problem using Bayes fator illustratedbelow: Je�reys test.



Je�reys Test for Normal Mean; σ2 UnknownX1,X2, . . . ,Xn a random sample from N(µ, σ2). We want to testM0 : µ = µ0 versusM1 : µ 6= µ0where µ0 is some spei�ed number.Parameter σ2 is ommon in the two models orresponding to M0and M1 and µ ours only in M1. Take the prior g0(σ) = 1/σ for σunder M0. Under M1, take the same prior for σ and add aonditional prior for µ given σ, namelyg1(µ|σ) =
1
σ
g2(µ

σ
).where g2(·) is a p.d.f. Je�reys suggested we should take g2 to beCauhy, so g0(σ) =

1
σ

under M0g1(µ, σ) =
1
σ
g1(µ|σ) =

1
σ

1
σπ(1 + µ2/σ2) under M1.One may now �nd the Bayes fator BF01 using (31).



Example 8. Einstein's theory of gravitation predits the amount ofde�etion of light de�eted by gravitation. Eddington's expeditionin 1919 (and other groups in 1922 and 1929) provided 4observations: x1 = 1.98, x2 = 1.61, x3 = 1.18, x4 = 2.24 (all inseonds as measures of angular de�etion). Suppose they arenormally distributed around their predited value µ. ThenX1, · · · ,X4 are independent and identially distributed as N(µ, σ2).Einstein's predition is µ = 1.75. Test M0 : µ = 1.75 versusM1 : µ 6= 1.75, where σ2 is unknown.Use the onventional priors of Je�reys to alulate the Bayes fator.BF01 = 2.98.The alulations with the given data lend some support toEinstein's predition. However, the evidene in the data isn't verystrong.



BICWhen we ompare two models M0 : θ ∈ Θ0 and M1 : θ ∈ Θ1, whatdoes the Bayes fatorBF01 =

∫
Θ0 f (x |θ)g0(θ) dθ
∫
Θ1 f (x |θ)g1(θ) dθ

=
m0(x)m1(x)measure?m0(x) measures how well M0 �ts the data x whereas m1(x)measures how well M1 �ts the same data, so BF01 is the relativestrength of the two models in the preditive sense. This an bedi�ult to ompute for ompliated models, so any goodapproximation is welome.Approximate marginal density m(x) of X for large sample size n:m(x) =

∫
π(θ)f (x |θ) dθ =?



Laplae's Methodm(x) =

∫
π(θ)f (x |θ) dθ =

∫
π(θ)

n∏i=1 f (xi |θ) dθ

=

∫
π(θ) exp( n∑i=1 log f (xi |θ)) dθ =

∫
π(θ) exp(nh(θ)) dθ.where h(θ) = 1n ∑ni=1 log f (xi |θ).Consider any integral of the formI =

∫ ∞

−∞
q(θ)enh(θ) dθwhere q and h are smooth funtions of θ with h having a uniquemaximum at θ̂.If h has a unique sharp maximum at θ̂, then most ontribution tothe integral I omes from the integral over a small neighborhood

(θ̂ − δ, θ̂ + δ) of θ̂.



Study the behavior of I as n →∞. As n →∞, we haveI ∼ I1 =

∫ θ̂+δ

θ̂−δ
q(θ)enh(θ) dθ.Laplae's method involves Taylor series expansion of q and habout θ̂:I ∼ ∫ θ̂+δ

θ̂−δ

[q(θ̂) + (θ − θ̂)q′(θ̂) +
12(θ − θ̂)2q′′(θ̂) + · · ·

]

× exp [nh(θ̂) + nh′(θ̂)(θ − θ̂) +
n2h′′(θ̂)(θ − θ̂)2 + · · ·

]

∼ enh(θ̂)q(θ̂)

∫ θ̂+δ

θ̂−δ

[1 + (θ − θ̂)q′(θ̂)/q(θ̂) +
12(θ − θ̂)2q′′(θ̂)/q(θ̂)

]

× exp [n2h′′(θ̂)(θ − θ̂)2] dθ.Assume  = −h′′(θ̂) > 0 and use a hange of variablet =
√n(θ − θ̂):



I ∼ enh(θ̂)q(θ̂)
1√n

×
∫ δ

√n
−δ

√n [1 +
t√n q′(θ̂)/q(θ̂) +

t22n q′′(θ̂)/q(θ̂)

] e−t2/2 dt
∼ enh(θ̂)

√2π√n q(θ̂)

[1 +
q′′(θ̂)2nq(θ̂)

]

= enh(θ̂)

√2π√n q(θ̂)
[1 + O(n−1)] . (32)Apply (32) to m(x) =
∫

π(θ)f (x |θ) dθ =
∫

π(θ) exp(nh(θ)) dθ,with q = π and ignore terms that stay bounded.log(m(x) ≈ nh(θ̂)− 12 log n = log(f (x |θ̂))− 12 log n.



What Happens When θ is p > 1 Dimensional?Simply replae (32) by its p dimensional ounter part:I = enh(θ̂)(2π)p/2n−p/2 det(∆h(θ̂))−1/2q(θ̂)(1 + O(n−1))where ∆h(θ) denotes the Hessian of −h, i.e.,
∆h(θ) =

(
− ∂2

∂θi∂θj h(θ)

)p×p .Now apply this tom(x) =
∫
· · ·
∫

π(θ)f (x |θ) dθ =
∫
· · ·
∫

π(θ) exp(nh(θ)) dθ, withq = π and ignore terms that stay bounded. Thenlog(m(x) ≈ nh(θ̂)− p2 log n = log(f (x |θ̂))− p2 log n.



Shwarz (1978) proposed a riterion, known as the BIC, based on(32) ignoring the terms that stay bounded as the sample sizen →∞ (and general dimension p for θ):BIC = log f (x |θ̂)− (p/2) log nThis serves as an approximation to the logarithm of the integratedlikelihood of the model and is free from the hoie of prior.2 logBF01 is a ommonly used evidential measure to ompare thesupport provided by the data x for M0 relative to M1. Under theabove approximation we have,2 log(BF01) ≈ 2 log( f (x|θ̂0)f (x|θ̂1))− (p0 − p1) log n. (33)This is the approximate Bayes fator based on the Bayesianinformation riterion (BIC) due to Shwarz (1978). The term
(p0 − p1) log n an be onsidered a penalty for using a moreomplex model.



AICReall the likelihood ratio riterion: λn = f (x|θ̂0)f (x|θ̂)P(M0 is rejeted|M0) = P(λn < ) ≈ P(χ2p1−p0 > −2 log()) > 0,so, from a frequentist point of view, a riterion based solely on thelikelihood ratio does not onverge to a sure answer under M0.Akaike (1983) suggested a penalized likelihood riterion:2 log( f (x|θ̂0)f (x|θ̂1))− 2(p0 − p1) (34)whih is based on the Akaike information riterion (AIC), namely,AIC = 2 log f (x|θ̂)− 2pfor a model f (x|θ). The penalty for using a omplex model is notas drasti as that in BIC.
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Model Seletion or Model Averaging?Example 9. Veloities (km/seond) of 82 galaxies in sixwell-separated oni setions of the Corona Borealis region. Howmany lusters?
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Consider mixture of normals:f (x |θ) =
n∏i=1 f (xi |θ)

=
n∏i=1 k∑j=1 pjφ(xi |µj , σ2j ) ,where k is the number of mixture omponents, pj is the weightgiven to the jth omponent, N(µj , σ2j ).Models to onsider:Mk : X has density k∑j=1 pjφ(xi |µj , σ2j ), k = 1, 2 . . .i.e., Mk is a k omponent normal mixture.



Bayesian model seletion proedure omputesm(x |Mk) =
∫

π(θk)f (x |θk) dθk , for eah k of interest and piksthe one whih gives the largest value.Example 9 ontd. Chib (1995), JASA:k σ2j log(m(x |Mk))2 σ2j = σ2 -240.4643 σ2j = σ2 -228.6203 σ2j unrestrited -224.1383 omponent normal mixture model with unequal varianes seemsbest.



• From the Bayesian point of view, a natural approah to modelunertainty is to inlude all models, Mk , under onsiderationfor future deisions.
• i.e., Bypass the model-hoie step entirely.
• Unsuitable for sienti� inferene where seletion of a model isa must.
• Suitable for predition purposes, sine underestimation ofunertainty resulting from hoosing model Mk̂ is eliminated.



We have Θ = ∪kΘk ,f (y |θ) = fk(y |θk) if θ ∈ Θk and
π(θ) = pkgk(θk) if θ ∈ Θk ,where pk = Pπ(Mk) is the prior probability of Mk and gk integratesto 1 over Θk . Therefore, given the sample x = (x1, . . . xn),

π(θ|x) =
f (x |θ)π(θ)m(x)

=
∑k pkm(x)

fk(x |θk)gk(θk)IΘk (θk)
=

∑k P(Mk |x)gk(θk |x)IΘk (θk).



Preditive density m(y |x) given the sample x = (x1, . . . xn) is whatis needed. This is given bym(y |x) =

∫

Θ
f (y |θ)π(θ|x) dθ

=
∑k P(Mk |x)

∫

Θk fk(y |θk)gk(θk |x) dθk
=

∑k P(Mk |x)mk(y |x),whih is learly obtained by averaging over all models.



Minimum Desription LengthModel �tting is like desribing the data in a ompat form. Amodel is better if it an provide a more ompat desription, or if itan ompress the data more, or if it an be transmitted with fewerbits. Given a set of models to desribe a data set, the best model isthe one whih provides the shortest desription length.In general one needs log2(n) bits to transmit n, but patterns anredue the desription length.100 · · · 0: 1 followed by a million 0's1010 · · · 10: pair 10 repeated a million times



If data x is known to arise from a probability density p, then theoptimal ode length (in an average sense) is given by − log p(x).The optimal ode length of − log p(x) is valid only in the disretease. What happens in the ontinuous ase? Disretize x anddenote it by [x ] = [x ]δ where δ denotes the preision. This meanswe onsiderP([x ]− δ/2 ≤ X ≤ [x ] + δ/2) =

∫ [x]+δ/2
[x]−δ/2 p(u) du ≈ δp(x)instead of p(x) itself as far as oding of x is onsidered when x isone-dimensional. In the r -dimensional ase, replae the densityp(x) by the probability of the r -dimensional ube of side δontaining x, namely p([x])δr ≈ p(x)δr , so that the optimal odelength hanges to − log p(x)− r log δ.



MDL for Estimation or Model FittingConsider data x ≡ xn = (x1, x2, . . . , xn), and suppose
F = {f (xn|θ) : θ ∈ Θ}is the olletion of models of interest. Further, let π(θ) be a priordensity for θ. Given a value of θ (or a model), the optimal odelength for desribing xn is − log f (xn|θ), but sine θ is unknown, itsdesription requires a further − log π(θ) bits on average. Thereforethe optimal ode length is obtained upon minimizingDL(θ) = − log π(θ)− log f (xn|θ), (35)so that MDL amounts to seeking that model whih minimizes thesum of(i) the length, in bits, of the desription of the model, and(ii) the length, in bits, of data when enoded with the help of themodel.



The posterior density of θ given the data xn is
π(θ|xn) =

f (xn|θ)π(θ)m(xn) , (36)where m(y) is the marginal or preditive density. MinimizingDL(θ) = − log π(θ)− log f (xn|θ) = − log{f (xn|θ)π(θ)}over θ is equivalent to maximizing π(θ|xn). Thus MDL forestimation or model �tting is equivalent to �nding the highestposterior density (HPD) estimate of θ.Consider the ase of F having model parameters of di�erentdimensions. Consider the ontinuous ase and disretization.Denote k-dimensional θ by θk = (θ1, θ2, . . . , θk). Then



DL(θk)
= − log{π([θk ]δπ)δkπ} − log{f ([xn]δf |[θk ]δπ)δnf }
= − log π([θk ]δπ)− k log δπ − log f ([xn]δf |[θk ]δπ)− n log δf
≈ − log π(θk)− k log δπ − logf (xn|θk)− n log δf .Note that the term −n log δf is ommon aross all models, so itan be ignored. However, the term −k log δπ indiating thedimension of θ in the model varies and is in�uential. Aording toRissanen, δπ = 1/√n is optimal, in whih aseDL(θk) ≈ −logf (xn|θk)− log π(θk) +

k2 log n + onstant . (37)
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