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What is Statistical Inference?

It is an inverse problem as in ‘Toy Example’:

Example 1 (Toy). Suppose a million candidate stars are examined
for the presence of planetary systems associated with them. If 272
‘successes’ are noticed, how likely that the success rate is 1%,
0.1%, 0.01%, - - - for the entire universe?

Probability models for observed data involve direct probabilities:
Example 2. An astronomical study involved 100 galaxies of which
20 are Seyfert galaxies and the rest are starburst galaxies. To
illustrate generalization of certain conclusions, say 10 of these 100
galaxies are randomly drawn. How many galaxies drawn will be
Seyfert galaxies?

This is exactly like an artificial problem involving an urn having 100
marbles of which 20 are red and the rest blue. 10 marbles are
drawn at random with replacement (repeatedly, one by one, after
replacing the one previously drawn and mixing the marbles well).
How many marbles drawn will be red?



Data and Models

X = number of Seyfert galaxies (red marbles) in the sample (out of
sample size n = 10)

n

P(X = k|#) = (k>ek(1—9)<"-k>, k=0,1,...n (1)

In (1) 6 is the proportion of Seyfert galaxies (red marbles) in the
urn, which is also the probability of drawing a Seyfert galaxy at
20

each draw. In Example 2, 6 = 100 = 0.2 and n = 10. So,

P(X =0[0 =0.2) = 0.8, P(X = 1|6 =0.2) = 10 x 0.2 x 0.8°,
and so on.



In practice, as in ‘Toy Example’, 6 is unknown and inference about
it is the question to solve.

In the Seyfert/starburst galaxy example, if 6 is not known and 3
galaxies out of 10 turned out to be Seyfert, one could ask:

how likely is # = 0.1, or 0.2 or 0.3 or ...7?
Thus inference about 6 is an inverse problem:

Causes (parameters) «— Effects (observations)



How does this inversion work?

The direct probability model P(X = k|f) provides a likelihood
function for the unknown parameter 8 when data X = x is
observed:

I(8]x) = f(x|0) (= P(X = x|6) when X is a discrete random
variable) as function of 6 for given x.

Interpretation: 7(x|0) says how likely x is under different ¢ or the
model P(.|0), so if x is observed, then

P(X = x|0) = f(x|0) = I(0]|x) should be able to indicate what the
likelihood of different 6 values or P(.|0) are for that x.

As a function of x for fixed § P(X = x|0) is a probability mass
function or density, but as a function of # for fixed x, it has no such
meaning, but just a measure of likelihood.



After an experiment is conducted and seeing data x, the only entity
available to convey the information about # obtained from the
experiment is /(6]x).

For the Urn Example we have /(6|X = 3) oc 03(1 — 0)":
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Maximum Likelihood Estimation (MLE): If /(0|x) measures the
likelihood of different € (or the corresponding models P(.|#)), just
find that § = @ which maximizes the likelihood.

For model (1)

0 = 0(x) = x/n = sample proportion of successes .

This is only an estimate. How good is it? What is the possible
error in estimation?

Likelihood function /(0|x) has nothing to say about these.
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Frequentist Statistics

Consider repeating this experiment again and again. Then one can
look at all possible sample data. i.e. all possible x values. Utilize
long-run average behaviour of the MLE. i.e. treat  as a random
quantity by replacing x by X in é(x) i.e. look at X/n where X can
take all possible values, 0, 1, ...n.

X ~ Binomial(n, #) with the probability model (1). Noting that
the variance of such an X is nf(1 — 6), one obtains the variance of
X /n to be O(1 — 0)/n, which can be estimated by (1 — ) /n. A
measure of estimation error of d is the estimated standard deviation
of X/n, namely, \/9(1 — é)/n For further development we need
large n, so that we can apply the Law of Large Numbers and the
Central Limit Theorem to X /n. Then, the estimator will be close
to the true 6 probabilistically and also, it is approximately
distributed like a Gaussian random variable with mean 6 and
variance (1 —0)/n.



Confidence Statements

Specifically, for large n, approximately

or

T~ N(0,1). (2)
(1 —0)/n

From (2), an approximate 95% confidence interval for 6 (when n is

large) is
04+ 21/6(1 —8)/n.



What Does This Mean?

Simply, if we sample again and again, in about 19 cases out of 20
this random interval

(é(X)—z\/é(x (1= 60X))/n, B(X) + 20/B(X)( )/n>

will contain the true unknown value of 4.

Fine, but what can we say about the one interval that we can
construct for the given sample or data x?

Nothing; either @ is inside

(0.3-2,/0.3x0.7/10,0.3 4 2,/0.3 x 0.7/10) or it is outside.
Can we say 0.3 —2,/0.3 x 0.7/10 < 0 < 0.3+2,/0.3 x 0.7/10

with 95% chance?

Not in this approach. If 8 is treated as fixed unknown constant,
conditioning on the given data X = x is meaning|ess.
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Conditioning on Data

e What other approach is possible, then?

e How does one condition on data?

e How does one talk about probability of a model or a

hypothesis?

Example 3.(not from physics but medicine) Consider a blood test
for a certain disease; result is positive (x = 1) or negative (x = 0).
Suppose 01 denotes disease is present, 05 disease not present.

Test is not confirmatory. Instead the probability distribution of X
for different 0 is:

x=0|x=1 What does it say?
6 | 0.2 0.8 Test is +ve 80% of time if ‘disease present’
6 | 0.7 0.3 | Test is —ve 70% of time if ‘disease not present’

If for a particular patient the test result comes out to be ‘positive’,
what should the doctor conclude?



What is the Question?

What is to be answered is ‘what are the chances that the disease is
present given that the test is positive?’ i.e., P(0 = 61|X = 1).

What we have is P(X = 1|0 = 6;) and P(X = 1|0 = 6,).

We have the ‘wrong’ conditional probabilities. They need to be
‘reversed’. But how?
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The Bayesian Recipe
Recall Bayes Theorem: If A and B are two events,
P(A and B)
P(B)

assuming P(B) > 0. Therefore, P(A and B) = P(A|B)P(B), and
by symmetry P(A and B) = P(B|A)P(A). Consequently, if P(B|A)
is given and P(A|B) is desired, note

P(Aand B) _ P(B|A)P(A)
P(B) P(B)

P(A|B) =

P(A[B) =

Rule of total probability says,
P(B)=P(Band Q) = P(Band A)+ P(B and A°)
= P(BJA)P(A) + P(B|A°)(1 — P(A)), so

P(BIA)P(A) ‘)
(BIAYP(A) + P(BIA%)(1 — P(A))

P(AIB) = -



Bayes Theorem allows one to invert a certain conditional probability
to get a certain other conditional probability. How does this help
us?

In our example we want P(6 = 61|X =1). From (3),

P(O=6,|X=1)
P(X=1]60=61)P(0=0)

= PX=1[0)PO=0) L P(X =1]0,)P(a =0 ¥

So, all we need is P(6 = 61), which is simply the probability that a
randomly chosen person has this disease, or just the ‘prevalence’ of
this disease in the concerned population. The good doctor most
likely has this information from his experience in the field. But this
is not part of the experimental data. This is pre-experimental
information or prior information. If we have this, and are willing to
incorporate it in the analysis, we get the post-experimental
information or posterior information in the form of P(6|X = x).



In our example, if we take P(6 = 61) = 0.05 or 5%, we get

0.8 % 0.05 0.04
PO=6, | X=1)= — —0.123
( 1 )= 08 %005 +03x0095 0.325

which is only 12.3% and P( =60, | X = 1) = 0.877 or 87.7%.

Formula (4) which shows how to ‘invert’ the given conditional
probabilities, P(X = x | #) into the conditional probabilities of
interest, P(6 | X = x) is an instance of the Bayes Theorem, and
hence the Theory of Inverse Probability (usage at the time of Bayes
and Laplace, late eighteenth century and even by Jeffreys), is
known these days as Bayesian inference.



Ingredients of Bayesian inference:

likelihood function, /(6]x); 6 can be a parameter
vector

prior probability, 7(6)

Combining the two, one gets the posterior probability density or
mass function

m(0)1(6]x) if 0 is continuous.

_m(O)I(0]x) if 0 is discrete:
(0| x) = { 22 m(0;)1(6;1x) ()
J(u)i(ulx) du
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Inference for Binomial proportion

Example 2 contd. Suppose we have no special information
available on 6. Then assume 6 is uniformly distributed on the
interval (0,1). i.e., the prior density is 7(#) =1, 0<6 <1.

This is a choice of non-informative or vague or reference prior.
Often, Bayesian inference from such a prior coincides with classical
inference.

In the Example then the posterior density of 6 given x is
m(0)1(0]x)
J w(u)l(ul|x) du
(n+1)!

(0]x)

As a function of @, this is the same as the likelihood function
1(0]x) < (1 — 6)"*, and so maximizing the posterior probability
density will give the same estimate as the maximum likelihood
estimate!



Influence of the Prior

If we had some knowledge about 6 which can be summarized in the
form of a Beta prior distribution with parameters o and ~, the
posterior will also be Beta with parameters x + « and n — x + ~.
Such priors which result in posteriors from the same ‘family’ are
called ‘natural conjugate priors’. Robustness?

plihetalx)




Robustness?
Objective Bayesian Analysis:
Invariant priors: Jeffreys

Reference priors: Bernardo, Jeffreys

Maximum entropy priors: Jaynes



In Example 2, what 7(6|x) says is that the uncertainty in 6 can
now be described in terms of an actual probability distribution
concentrated around the maximum likelihood estimate § = x/n.
However, the interpretation of d as an estimate of  is quite
different. It is the most probable value of the unknown parameter 6
conditional on the sample data x; it is called the ‘maximum a
posteriori estimate (MAP)' or the ‘highest posterior density
estimate (HPD)'.

There is no need to mimic the MLE anymore. We have a genuine
probability distribution, namely, the posterior distribution to
quantify our post-experimental knowledge about 6. Indeed the
usual Bayes estimate is the mean of the posterior distribution which
minimizes the posterior dispersion:

E[(6 — 85)%|x] = min E[(6 — 2)°|x].

when A = E(6]x).



If we choose 6A?B as the estimate of #, we get a natural measure of
variability of this estimate in the form of the posterior variance:
E[(0 — E(0|x))?|x]. Therefore the posterior standard deviation is a
natural measure of estimation error. i.e., our estimate is

0 = \/ET(0 — E(0X)7Ix].

In fact, we can say much more. For any interval around @ we can
compute the (posterior) probability of it containing the true
parameter 6. In other words, a statement such as

P(Og — ky < 6 < O + ky|x) = 0.95
is perfectly meaningful.

All these inferences are conditional on the given data.



In Example 2, if the prior is a Beta distribution with parameters «
and ~, then 0|x will have a Beta(x + a, n — x + ) distribution, so
the Bayes estimate of 6 will be

(x+a) n x at+y o«
(n+a+v) n+a+yn nt+at+ya+y

iy -

This is a convex combination of sample mean and prior mean, with
the weights depending upon the sample size and the strength of the
prior information as measured by the values of « and ~.

Bayesian inference relies on the conditional probability language to
revise one’s knowledge. In the above example, prior to the
collection of sample data one had some (vague, perhaps)
information on 6. Then came the sample data. Combining the
model density of this data with the prior density one gets the
posterior density, the conditional density of 6 given the data. From
now on until further data is available, this posterior distribution of
0 is the only relevant information as far as 6 is concerned.
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Inference With Normals/Gaussians

Gaussian PDF

1 (x=n)?

f(x|pu,0?) = We_ 202 over [—00, x|

Common abbreviated notation: X ~ N(u,0?)

Parameters
po— E(X)=(X)= / x F (x|, o) dx

0?2 = EX—-p)?=(X E/X— f (x|, o) dx



Inference About a Normal Mean

Example 4. Fit a normal/Gaussian model to the ‘globular cluster
luminosity functions’ data. The set-up is as follows.

Our data consist of n measurements, X; = i + ¢;.
Suppose the noise contributions are independent, and
€i ~ N(0,02). Denoting by x, the random sample (xi, . .. xn),

f(Xlwo?) = []f(xiln.o?

_1
e 252 (Xl M)z

1
N H\/ﬁ
= (27TU2)_n/2e 20-2 Zl I(Xl /'L)
- (271'0'2)_”/26 202 [Z: l(XI X) +n(x #)]

Note (X,s% = >.7_,(X;i — X)2/(n — 1)) is sufficient for the
parameters (i, 02). This is a very substantial data compression.



Inference About a Normal Mean, ¢2 known
(Not useful, but easy to understand.)

I(plx) o F(x|ps, 0?) o e 22 B3,

so that X is sufficient. Also, X|u ~ N(u,02/n). If an informative
prior, i ~ N(ug,72) is chosen for ,

m(plx) oc I(plx)m(p)

n(p—x)2 — 2
_%[(uaiz)Jr%}
xX e

2
2 2 2 2 -
_T°40o /n _T%0 /n [ po nx
e 27252 /n (N 72+02/n(72+o'2 )>

X

ie., ulx ~ N(ji,62):

. 1%0%/n (,uo n)_()
peo= 2 +0%/n'12 o2
72 _ 02/n

T2 +02/nx+ 72 +U2/n'u0'



1 is the Bayes estimate of u, which is just a weighted average of
sample mean X and prior mean ug.

82 is the posterior variance of i and

9 7202/n o? 72

T 12402/n n12402/n

Therefore [i + 0 is our estimate for 1 and /i =26 is a 95% HPD
(Bayesian) credible interval for p.

2

What happens as 7 — o0, or as the prior becomes more and more

flat?

i.e., Jeffreys’ prior m(1) = C reproduces frequentist inference.



Inference About a Normal Mean, ¢2 unknown

Our observations Xj, ... X, is a random sample from a Gaussian
population with both mean 1 and variance o unknown.

We are only interested in p.

How do we get rid of the nuisance parameter o2?

Bayesian inference uses posterior distribution which is a probability
distribution, so o should be integrated out from the joint posterior
distribution of x and o2,

(11,02 |x) = (2m0?) "/ 2e™ 2o ofali R hne=507),

Start with m(p, 0%) and get
7 (1,02 1x) o 7(1t, ) (11,0 x)

and then get
w(uix) = [ (i o?lx) do
0



Use Jeffreys’ prior m(u, 0?) oc 1/0?: Flat prior for y which is a
location or translation parameter, and an independent flat prior for
log(c) which is again a location parameter, being the log of a scale
parameter.

1
(1, 0% [x) o —51(p, *[x)

m(ulx) o /00(02)("+1)/2e_2;2[2""l(x’_’_‘)2+"(“_’_()2] do?
0

x [(n—1)s*+n(p —x)?] /2

1 n(p—x)*]""?

1
> [+n—1 s?

o< density of Students t, 1.



| data ~ t,_1

Vn(p —X)

S

_ s
= <p<x+ tn,1(0.975)ﬁ | data) = 95%

i.e., the Jeffreys’ translation-scale invariant prior reproduces
frequentist inference.

P(% — t,_1(0.975)

g

What if there are some constraints on p such as —A < u < B, for
example, ;1 > 07 We will get a truncated £, i instead, but the
procedure will go through with minimal change.

Example 4 contd. (GCL Data) n = 360, x = 14.46, s = 1.19.

V/360(1 — 14.46)
1.19

‘ data ~ t359

1| data ~ N(14.46,0.063) approximately.



Estimate for mean GCL is 14.46 4 0.063 and 95% HPD credible
interval is (14.33,14.59).



Comparing two Normal Means

Example 5. Check whether the mean distance indicators in the
two populations of LMC datasets are different. Model as follows:

X1,...Xn, is a random sample from N(u1,02).
Y1,... Yn, is a random sample from N(p2,03).
Samples are independent.

Unknown parameters: (yu1, p2,0%,03)
Quantity of interest: n = 3 —

Nuisance parameters: o and o3

Case 1. 02 = ¢2. Then sufficient statistic for (u1, 2, 0?) is
1 2 H

EEF S Sl

)?‘/1’17“270-2 ~ N(M1702/n1)' \_/|M1,,U,2,0'2 ~ N(,u2,02/n2),
(nl + 2 — 2)52“‘17:&2) 0 ~ 0-2X%11+n2—2'

These three are independently distributed.



X = Y|, p2,0% ~ N(n,0? (5 + ), 1= pa — o2
Use Jeffreys’ location-scale invariant prior (u1, 2, 02) o< 1/0

1 1
77‘0—27X7y ~ N(;( - }770—2(7 + 7))7 and
m ny
(0, o2[x,y) o w(nlo?, x, y)m(o?|s?), (7)

Integrate out o from (7) as in the previous example to get

n—(x—y
(11) | X, Y ~ thy4ny—2-
S\/m T

95% HPD credible interval for n = 1 — po is

1 1
X — V% topn—2(0.975)s¢/ — + —,
ny n

same as frequentist t-interval.



Example 5 contd. We have x = 18.539, y = 18.473, n; = 13,
ny =12 and s> = 0.0085. ) = X —y = 0.066, s,/ - + ~ = 0.037,
t23(0.975) = 2.069.

95% HPD credible interval for n = 1 — po:
(0.066 — 2.069 x 0.037,0.066 + 2.069 x 0.037) = (—0.011,0.142).

pi(etaldata)




Case 2. 07 and 03 are not known to be equal.

From the one sample normal example, note that
(X,s2 = n1 = SoM (X — X)?) sufficient for (u1,0?), and
s2 n2 P 1(Y Y)?) sufficient for (u2,03).

Making inference on 7 = 1 — po when o2 and o3 are not assumed
to be equal is called the Behrens-Fisher problem for which the
frequentist solution is not very straight forward, but the Bayes
solution is.




X|p1,0% ~ N(u1,0%/m), (m — 1)s¥|p1,0% ~ o?x3,_1. and are
independently distributed.

Ylu2,03 ~ N(pz,03/n3), (ny — 1)s% |p2, 03 ~ 0?x2, ;, and are
independently distributed.

X and Y samples are independent.
Use Jeffreys’ prior m(u1, p2,02,02) x 1/0% x 1/02

Calculations similar to those in one-sample case give:
Vi (p —x)
SX

V(2 —y)

Sy

| data ~ tp,—1,
| data ~ tp,_1,

and these two are independent.



Posterior distribution of n = 3 — uo given the data is non-standard
(difference of two independent t variables) but not difficult to get.
Use Monte-Carlo Sampling: Simply generate (p1, i2) repeatedly
from (8) and construct a histogram for n = 1 — o

Example 5 (LMC) contd. Looks slightly different.




Posterior mean of n = 1 — o is

f) = E(u1 — pz| data) = 0.0656.

95% HPD credible interval for = 1 — po is

_{ (—0.011,0.142)  equal variance;

(—0.014,0.147)  unequal variance.
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Bayesian Computations

Bayesian analysis requires computation of expectations and
quantiles of probability distributions (posterior distributions). Most
often posterior distributions will not be standard distributions.
Then posterior quantities of inferential interest cannot be computed
in closed form. Special techniques are needed.

Example M1. Suppose Xi, Xa, ..., Xk are observed number of
certain type of stars in k similar regions. Model them as
independent Poisson counts: X; ~ Poisson(6;). 0; are a priori
considered related. v; = log(0;) is the ith element of v and suppose

v~ N (p1, 72 {(1 = p)lk + p11'})

where 1 is the k-vector with all elements being 1, and p, 72 and p
are known constants. Then

k
f(x|v) =exp < Z{e”' — u,x,}) /Hx;!.



m(v) o< exp <—2;l_2(1/ —p1) (1= p)h + pll')_:l (v — Nl))

m(v|x)
/ _ -1 v—
exp {_Eik:l (e — vy} — Lo (O 1) ul)}.

272

To obtain the posterior mean of ;, compute

E™(0;]x) = E™(exp(v)[x) = kafe;ffgljéifil;ij ”

where g(v|x) =
exp {— Sk (e —vixi} — (oY (( ol ott’) (U_Ml)}.

272



This is a ratio of two k-dimensional integrals, and as k grows, the
integrals become less and less easy to work with. Numerical
integration techniques fail to be an efficient technique in this case.
This problem, known as the curse of dimensionality, is due to the
fact that the size of the part of the space that is not relevant for
the computation of the integral grows very fast with the dimension.
Consequently, the error in approximation associated with this
numerical method increases as the power of the dimension k,
making the technique inefficient.

The recent popularity of Bayesian approach to statistical
applications is mainly due to advances in statistical computing.
These include the E-M algorithm and the Markov chain Monte
Carlo (MCMC) sampling techniques.



Monte Carlo Sampling

Consider an expectation that is not available in closed form. To
estimate a population mean, gather a large sample from this
population and consider the corresponding sample mean. The Law
of Large Numbers guarantees that the estimate will be good
provided the sample is large enough. Specifically, let f be a
probability density function (or a mass function) and suppose the
quantity of interest is a finite expectation of the form

Erh(X / h(x (11)

(or the corresponding sum in the discrete case). If i.i.d.
observations X1, X5, ... can be generated from the density f, then

%Z (12)

converges in probability to Efh(X). This justifies using hp, as an
approximation for Efh(X) for large m.



To provide a measure of accuracy or the extent of error in the
approximation, compute the standard error. If Varsh(X) is finite,
then Varg(hm) = Vargh(X)/m. Further,
Vargh(X) = Eh?(X) — (E,ch(X))2 can be estimated by
s,2n - 1 i(h(x,) — /_7m)2,
m

i=1
and hence the standard error of h,, can be estimated by

1 A

o= (O~ )

Confidence intervals for Efh(X): Using CLT
vm (hm — Erh(X))
—_—

m—o0

N(0,1
- (0,1), so
(/_'lm — Zo/25m//m, hm + Zo/25m/+/m) can be used as an
approximate 100(1 — «)% confidence interval for Efh(X), with
z,,/5 denoting the 100(1 — /2)% quantile of standard normal.



What Does This Say?

If we want to approximate the posterior mean, try to generate i.i.d.
observations from the posterior distribution and consider the mean
of this sample. This is rarely useful because most often the
posterior distribution will be a non-standard distribution which may
not easily allow sampling from it. What are some other possibilities?

Example M2. Suppose X is N(f, %) with known o2 and a
Cauchy(u, T) prior on @ is considered appropriate. Then

m(0]x) o exp (—(0 — x)2/(20%)) (72 + (6 — w)?)

and hence the posterior mean is

S 0exp (— A5 ) (72 (0 w?) " do
Jeee (- GEE) (24 (0 - ) do
S0 {30 (5)} (2 4+ (0 — ) db
S Ao (N 2+ (0 - ) do

where ¢ denotes the density of standard normal.

E™(0]x) =




E™(0|x) is the ratio of expectation of h(6) = /(72 + (6 — u)?) to
that of h(0) = 1/(72 + (6 — u)?), both expectations being with
respect to the N(x,o?) distribution. Therefore, we simply sample
01,0, .. from N(x,c?) and use

YT 0 (24 (0 - p)?)

B N

as our Monte Carlo estimate of E™(0|x). Note that (11) and (12)
are applied separately to both the numerator and denominator, but
using the same sample of #'s. It is unwise to assume that the
problem has been completely solved. The sample of §'s generated
from N(x,0?) will tend to concentrate around x, whereas to
satisfactorily account for the contribution of the Cauchy prior to
the posterior mean, a significant portion of the #’s should come
from the tails of the posterior distribution.




Why not express the posterior mean in the form
I 0exp (— (9,;2)2) OLL
I exp (*(92}2)2) w(0)do
and then sample 0's from Cauchy(u, ) and use the approximation
_— Xili0iexp (—%)
EX(0lx) = T
S exp (-50)

However, this is also not satisfactory because the tails of the
posterior distribution are not as heavy as those of the Cauchy prior,
and there will be excess sampling from the tails relative to the
center. So the convergence of the approximation will be slower
resulting in a larger error in approximation (for a fixed m). ldeally,
therefore, sampling should be from the posterior distribution itself.
With this view in mind, a variation of the above theme, called
Monte Carlo importance sampling has been developed.

E™(0]x) =




Consider (11) again. Suppose that it is difficult or expensive to
sample directly from f, but there exists a probability density u that
is very close to f from which it is easy to sample. Then we can
rewrite (11) as

Erh(X) — /Xh(x)f(x) dx:/Xh(x)
{

. h(x)w(x)} u(x) dx = E, {h(X)w(X)},

where w(x) = f(x)/u(x). Now apply (12) with f replaced by u
and h replaced by hw. In other words, generate i.i.d. observations
X1, X5, ... from the density u and compute

The sampling density v is called the importance function.



Markov Chain Monte Carlo Methods

A severe drawback of the standard Monte Carlo sampling/
importance sampling: complete determination of the functional
form of the posterior density is needed for implementation.

Situations where posterior distributions are incompletely specified
or are specified indirectly cannot be handled: joint posterior
distribution of the vector of parameters is specified in terms of
several conditional and marginal distributions, but not directly.

This covers a large range of Bayesian analysis because a lot of
Bayesian modeling is hierarchical so that the joint posterior is
difficult to calculate but the conditional posteriors given parameters
at different levels of hierarchy are easier to write down (and hence
sample from).



Markov Chains in MCMC

A sequence of random variables {X,},>q is a Markov chain if for
any n, given the current value, X, the past {Xj,j < n—1} and the
future {Xj : j > n+ 1} are independent. In other words,

P(AN B|X,) = P(A|Xn)P(B|Xn), (13)

where A and B are events defined respectively in terms of the past
and the future.

Important subclass: Markov chains with time homogeneous or
stationary transition probabilities: the probability distribution of
Xn+1 given X, = x, and the past, Xj:j < n— 1 depends only on x
and does not depend on the values of X;:j <n—1orn.

If the set S of values {X,} can take, known as the state space, is
countable, this reduces to specifying the transition probability
matrix P = ((pjj)) where for any two values i,/ in S, pjj is the
probability that X,.1 = j given X, =i, i.e., of moving from state i
to state j in one time unit.



For state space S that is not countable, specify a transition kernel
or transition function P(x,-) where P(x, A) is the probability of
moving from x into A in one step, i.e., P(Xp+1 € A|X, = x).

Given the transition probability and the probability distribution of
the initial value Xy, one can construct the joint probability
distribution of {X; : 0 < j < n} for any finite n. i.e.,

P(Xo = io, X1 = i1y ooy Xn1 = in1, Xo = i)
= P(Xp = in|Xo = ity s Xno1 = in_1)
X P(Xo = io, Xi = ity o+ Xp1 = in_1)
= Pin1inP(Xo =l0,..., Xn-1 = in_1)
= P(Xo = i0)Pioir Piris - - - Pin_1in-



A probability distribution 7 is called stationary or invariant for a
transition probability P or the associated Markov chain {X,} if it is
the case that when the probability distribution of Xj is 7 then the
same is true for X, for all n > 1. Thus in the countable state space
case a probability distribution 7 = {m; : i € S} is stationary for a
transition probability matrix P if for each j in S,

P(X1=j) = ZP(Xlzj\oni)P(oni)

1

- Zw,-p,-j =P(Xo =j) = 7. (14)

In vector notation it says 7 = (71,72, ...) is a left eigenvector of
the matrix P with eigenvalue 1 and

7w =mP. (15)



Similarly, if S is a continuum, a probability distribution 7 with
density p(x) is stationary for the transition kernel P(-,-) if

7(A) = /A p(x) dx = [5 P(x, A)p(x) dx

forall ACS.

A Markov chain {X,} with a countable state space S and transition
probability matrix P = ((pjj)) is said to be irreducible if for any two
states / and j the probability of the Markov chain visiting j starting
from i is positive, i.e., for some

n>1,p" = P(Xy = j|Xo = i) > 0.

A similar notion of irreducibility, known as Harris or Doeblin
irreducibility exists for the general state space case also.



Theorem (Law of Large Lumbers for Markov Chains).
{Xn}n>0 is a Markov chain with a countable state space S and a
transition probability matrix P. Suppose it is irreducible and has a
stationary probability distribution 7 = (7; : i € S) as defined in
(14). Then, for any bounded function h: S — R and for any initial
distribution of Xg

~ SO — 3 HG) (16)

i=0
in probability as n — oo.

A similar law of large numbers (LLN) holds when the state space S
is not countable. The limit value in (16) will be the integral of h
with respect to the stationary distribution 7. A sufficient condition
for the validity of this LLN is that the Markov chain {X,} be Harris
irreducible and have a stationary distribution .



How is this Useful?

A probability distribution 7 on a set S is given. Want to compute
the “integral of h with respect to 7", which reduces to > _: h(j)m; in
the countable case.

Look for an irreducible Markov chain {X,} with state space S and
stationary distribution 7. Starting from some initial value Xp, run
the Markov chain {X;} for a period of time, say 0,1,2,...n—1
and consider as an estimate

fin == > h(X). (17)

By the LLN (16), pn will be close to - h(j)m; for large n.
This technique is called Markov chain Monte Carlo (MCMC).

To approximate m(A) = ZjeA m; for some A C S simply consider

Tn(A) = Z Ia(X; (A),



An irreducible Markov chain {X,} with a countable state space S is
called aperiodic if for some i € S the greatest common divisor,
g.cd. {n: p,(ln) > 0} = 1. Then, in addition to the LLN (16), the
following result on the convergence of P(X, = j) holds.

Z|P n=Jj)—m| =0 (18)

as n — oo, for any initial distribution of Xy. In other words, for
large n the probability distribution of X, will be close to 7. There
exists a result similar to (18) for the general state space case also.

This suggests that instead of doing one run of length n, one could
do N independent runs each of length m so that n = Nm and then
from the i run use only the m*" observation, say, X, ; and
consider the estimate



Metropolis-Hastings Algorithm

Very general MCMC method with wide applications. Idea is not to
directly simulate from the given target density (which may be
computationally difficult), but to simulate an easy Markov chain
that has this target density as the stationary distribution.

Let 7 be the target probability distribution on S, a finite or
countable set. Let @ = ((gj;)) be a transition probability matrix
such that for each i, it is computationally easy to generate a
sample from the distribution {g;; : j € S}. Generate a Markov
chain {X,} as follows. If X,, =/, first sample from the distribution
{qij : j € S} and denote that observation Y. Then, choose X, 1
from the two values X, and Y/, according to

P(Xn+1 = Yn|Xna Yn) = P(Xna Yn) =1- P(Xn+1 = Xn‘Xny Yn)a

where the “acceptance probability” p(-,-) is given by

p(i,j) = min {ZJIZJU', 1} for all (7,/) such that 7;g;; > 0.



{Xn} is a Markov chain with transition probability matrix
P = ((py)) given by

qijpij J#i
Pi=9N 1-=> pik, J=I (20)
ki

Q is called the “proposal transition probability” and p the
“acceptance probability”. A significant feature of this transition
mechanism P is that P and 7 satisfy

mipj = mjp;i forall i,j. (21)

This implies that for any j
> mipi =7 Y pji = ), (22)
i i

or, 7 is a stationary probability distribution for P.



Suppose S is irreducible with respect to @ and 7; > 0 for all j in S.
It can then be shown that P is irreducible, and because it has a
stationary distribution 7, LLN (16) is available. This algorithm is
thus a very flexible and useful one. The choice of @ is subject only
to the condition that S is irreducible with respect to Q. A sufficient
condition for the aperiodicity of P is that p;; > 0 for some i or

equivalently
> aipi < 1.
J#1
A sufficient condition for this is that there exists a pair (/,) such

that m;q;; > 0 and 7;qji < 7;qjj.

Recall that if P is aperiodic, then both the LLN (16) and (18) hold.



If S is not finite or countable but is a continuum and the target
distribution 7(-) has a density p(-), then one proceeds as follows:
Let Q be a transition function such that for each x, Q(x,-) has a
density g(x, y). Then proceed as in the discrete case but set the
“acceptance probability” p(x,y) to be

) i 200901}

p(x)a(x,y)
for all (x,y) such that p(x)g(x,y) > 0.

A particularly useful feature of the above algorithm is that it is
enough to know p(-) upto a multiplicative constant as the
“acceptance probability” p(-,-) needs only the ratios p(y)/p(x) or

i/ 7.
This assures us that in Bayesian applications it is not necessary to

have the normalizing constant of the posterior density available for
computation of the posterior quantities of interest.



Gibbs Sampling

Most of the new problems that Bayesians are asked to solve are
high-dimensional: e.g. micro-arrays, image processing. Bayesian
analysis of such problems involve target (posterior) distributions
that are high-dimensional multivariate distributions.

In image processing, typically one has N x N square grid of pixels
with N = 256 and each pixel has k > 2 possible values. Each
configuration has (256)? components and the state space S has
k(256)* configurations. How does one simulate a random
configuration from a target distribution over such a large S7

Gibbs sampler is a technique especially suitable for generating an
irreducible aperiodic Markov chain that has as its stationary
distribution a target distribution in a high-dimensional space having
some special structure.

The most interesting aspect of this technique: to run this Markov
chain, it suffices to generate observations from univariate
distributions.



The Gibbs sampler in the context of a bivariate probability
distribution can be described as follows. Let 7w be a target
probability distribution of a bivariate random vector (X, Y). For
each x, let P(x,-) be the conditional probability distribution of Y
given X = x. Similarly, let Q(y,-) be the conditional probability
distribution of X given Y = y. Note that for each x, P(x, ") is a
univariate distribution, and for each y, Q(y,-) is also a univariate
distribution. Now generate a bivariate Markov chain Z, = (X,, Y;)
as follows:

Start with some Xy = xp. Generate an observation Yy from the
distribution P(xg, ). Then generate an observation X; from
Q(Yo,-). Next generate an observation Y; from P(Xj,-) and so on.
At stage n if Z, = (Xp, Yn) is known, then generate Xp 41 from
Q(Ya,-) and Y41 from P(Xpyi1, ).



If 7 is a discrete distribution concentrated on

{(xi,yj) 1 <i<K,1<j<L}andif mj =m(x;,y;) then
P(xi,yj) = mjj/mi. and Q(yj, x;) = mjj/m.j, where

Ti. = > ; mj, ™j = )_; mj. Thus the transition probability matrix
R = ((rij),(ke))) for the {Z,} chain is given by

M), (key = Q(}’ﬁxk)P(Xka}/Z)
Tk} The
. 7rk.'

Verify that this chain is irreducible, aperiodic, and has 7 as its
stationary distribution. Thus LLN (16) and (18) hold in this case.
Thus for large n, Z, can be viewed as a sample from a distribution
that is close to 7 and one can approximate Zu‘ h(i,j)mi; by

2> 1= h(X, Yi)/n.



[llustration: Consider sampling from

X 0 1 p . C
< v ) ~ N2(( 0 ). | b1 ]) The conditional distribution of X
given Y = y and that of Y given X = x are

XY =y ~N(py,1 = p?) and Y|X = x ~ N(px,1 - p*). (23)

Using this property, Gibbs sampling proceeds as follows: Generate
(Xn, Yn), n=0,1,2,..., by starting from an arbitrary value xq for
Xo, and repeat the following steps for i = 0,1,...,n.

©® Given x; for X, draw a random deviate from N(px;,1 — p?)
and denote it by Y;.

@ Given y; for Y, draw a random deviate from N(py;, 1 — p?)
and denote it by Xji1.

The theory of Gibbs sampling tells us that if n is large, then (x,, yn)
is a random draw from a distribution that is close to

w((o) 15 1))



Multivariate extension: 7 is a probability distribution of a

k-dimensional random vector (X1, X2, ..., Xk). If
u=(u1,un,...,ux) is any k-vector, let
u_j=(u,un,...,U0i—1,Uit1,...,Ux) be the k — 1 dimensional

vector resulting by dropping the ith component u;. Let 7;(:|x_;)
denote the univariate conditional distribution of X; given that
X_;= (Xl,XQ,X,'_l,X,'_H, e ,Xk) = X_j. Starting with some
initial value for Xo = (xo1, X02, - - -, Xok ) generate

X1 = (X11, X12, ..., X1x) sequentially by generating Xi; according
to the univariate distribution 71 (+|xg_,) and then generating Xi2
according to o (|(X11, x03, X04, - - -, Xok) and so on.

The most important feature to recognize here is that all the
univariate conditional distributions, X;|X _; = x_;, known as full
conditionals should easily allow sampling from them. This is the
case in most hierarchical Bayes problems. Thus, the Gibbs sampler
is particularly well adapted for Bayesian computations with
hierarchical priors.



Rao-Blackwellization

The variance reduction idea of the famous Rao-Blackwell theorem
in the presence of auxiliary information can be used to provide
improved estimators when MCMC procedures are adopted.

Theorem (Rao-Blackwell) Let §(Xi, Xz, ..., X,) be an estimator
of 6 with finite variance. Suppose that T is sufficient for 6, and let
0*(T), defined by 6*(t) = E(6(X1, Xa,...,Xn)| T = t), be the
conditional expectation of §( X1, Xa,...,X,) given T =t. Then

E(6*(T) —0)? < E(6(X1, Xa, ..., Xn) — 0)°.

The inequality is strict unless § = ¢*, or equivalently, ¢ is already a
function of T.



By the property of iterated conditional expectation,

E(6"(T)) = E[E(0(X1, Xay..., Xn)|T)] = E(6(X1, X2, ..., Xn))-
Therefore, to compare the mean squared errors (MSE) of the two
estimators, compare their variances only. Now,

Var(6(X1, Xa,...,Xn)) = Var[E(|T)] + E [Var(| T)]
= Var(6*) + E[Var(6|T)] > Var(d),
unless Var(d| T) = 0, which is the case only if 0 is a function of T.

The Rao—Blackwell theorem involves two key steps: variance
reduction by conditioning and conditioning by a sufficient statistic.
The first step is based on the analysis of variance formula: For any
two random variables S and T, because

Var(S) = Var(E(S|T)) + E(Var(S|T)),

one can reduce the variance of a random variable S by taking
conditional expectation given some auxiliary information T. This
can be exploited in MCMC.



(X;,Y;),j =1,2,...,N: asingle run of the Gibbs sampler
algorithm with a target distribution of a bivariate random vector
(X,Y). Let h(X) be a function of the X component of (X, Y) and
let its mean value be p. Goal is to estimate u. A first estimate is
the sample mean of the h(X;),j =1,2,..., N. From the MCMC
theory, as N — oo, this estimate will converge to p in probability.
The computation of variance of this estimator is not easy due to
the (Markovian) dependence of the sequence {Xj,j =1,2,...,N}.
Suppose we make n independent runs of Gibbs sampler and
generate (Xjj, Y),j=1,2,...,N;i=1,2,...,n. Suppose that N
is sufficiently large so that (Xjy, Yin) can be regarded as a sample
from the limiting target distribution of the Gibbs sampling scheme.
Thus (Xin, Yin),i =1,2,...,n form a random sample from the
target distribution. Consider a second estimate of y—the sample
mean of h(Xin),i =1,2,...,n.



This estimator ignores part of the MCMC data but has the
advantage that the variables h(Xjy), i =1,2,...,n are
independent and hence the variance of their mean is of order n~1.
Now applying the variance reduction idea of the Rao-Blackwell
theorem by using the auxiliary information Yy, i =1,2,...,n, one
can improve this estimator as follows:

Let k(y) = E(h(X)|Y = y). Then for each i, k(Yin) has a smaller
variance than h(Xjy) and hence the following third estimator,

10
n;k(\/iN)a

has a smaller variance than the second one. A crucial fact to keep
in mind here is that the exact functional form of k(y) be available
for implementing this improvement.



(Example M2 continued.) X|6 ~ N(0, %) with known o2 and
0 ~ Cauchy(u, 7). Simulate 6 from the posterior distribution, but
sampling directly is difficult.

Gibbs sampling: Cauchy is a scale mixture of normal densities, with
the scale parameter having a Gamma distribution.

7(0) o« (P4 (0-pw?)

A A _ A
[T e (a0 - ) N T expl-3)
0 T

212

so that 7(#) may be considered the marginal prior density from the
joint prior density of (6, \) where

OIA ~ N(p,7°/X) and X\ ~ Gamma(1/2,1/2).

This implicit hierarchical prior structure implies: m(60|x) is the
marginal density from (6, A|x).



Full conditionals of (6, A|x) are standard distributions:

72 o2 7252
P ~ N 24
X x <T2—|—/\02X+72+)\U2H’T2—|—/\02>’ (24)
2 RY:
Aé,x ~ A6 ~ Exponential (W) . (25)
T

Thus, the Gibbs sampler will use (24) and (25) to generate (6, \)
from (0, A|x).



Example M5. X = number of defectives in the daily production of
a product. (X | Y,60) ~ binomial(Y,0), where Y, a day's
production, is Poisson with known mean A, and 6 is the probability
that any product is defective. The difficulty is that Y is not
observable, and inference has to be made on the basis of X only.
Prior: (6 | Y = y) ~ Beta(a, ), with known « and ~y independent
of Y. Bayesian analysis here is not difficult because the posterior
distribution of #|X = x can be obtained as follows. First,

X|6 ~ Poisson(Ad). Next, 6 ~ Beta(c, 7). Therefore,

7(B|X =x) o exp(—=A0)* (1 - 0)"10 < 6 < 1. (26)

This is not a standard distribution, and hence posterior quantities
cannot be obtained in closed form. Instead of focusing on 6|X
directly, view it as a marginal component of (Y, 6 | X). Check that
the full conditionals of this are given by

Y|X = x,0 ~ x + Poisson(A(1 — 6)), and

01X =x,Y =y ~Beta(a+ x,7+y — x)

both of which are standard distributions.



Example M5 continued. It is actually possible here to sample
from the posterior distribution using the accept-reject Monte Carlo
method:

Let g(x)/K be the target density, where K is the possibly unknown
normalizing constant of the unnormalized density g. Suppose h(x)
is a density that can be simulated by a known method and is close
to g, and suppose there exists a known constant ¢ > 0 such that
g(x) < ch(x) for all x. Then, to simulate from the target density,
the following two steps suffice. Step 1. Generate Y ~ h and

U~ U(0,1);

Step 2. Accept X = Y if U < g(Y)/{ch(Y)}; return to Step 1
otherwise.

The optimal choice for c is sup{g(x)/h(x).



In Example M5, from (26),
g(0) = exp(=A)0*T* (1 —0) 1 1{0 < 9 < 1},

so that h(0) may be chosen to be the density of Beta(x + «, 7).
Then, with the above-mentioned choice for c, if 6 ~ Beta(x + «, %)
is generated in Step 1, its ‘acceptance probability’ in Step 2 is
simply exp(—A\@).

Even though this method works here, let us see how the
Metropolis-Hastings algorithm can be applied.

The required Markov chain is generated by taking the transition
density q(z,y) = q(y|z) = h(y), independently of z. Then the
acceptance probability is

() L(C)
) = min{CE0 1)

= min{exp (—A(y — 2)),1}.



The steps involved in this “independent” M-H algorithm are:

Start at t = 0 with a value xp in the support of the target
distribution; in this case, 0 < xg < 1. Given x;, generate the next
value in the chain as given below.

(a) Draw Y; from Beta(x + «, 7).

(b) Let
_ | Y: with probability p;
Xe+1) = x; otherwise,
where py = min{exp (=\(Y; — x¢)), 1}.
(c) Set t =t +1 and go to step (a).

Run this chain until t = n, a suitably chosen large integer. In our
example, for x =1, a =1, v = 49 and A = 100, we simulated such
a Markov chain. The resulting frequency histogram is shown in
Figure below, with the true posterior density super-imposed on it.



——

o Q.02 0.04 0.086

Figure: M-H frequency histogram and true posterior density.
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Empirical Bayes Methods for High Dimensional
Problems

This is becoming popular again, this time for ‘high dimensional’
problems. Astronomers routinely estimate characteristics of millions
of similar astronomical objects — distance, radial velocity whatever.
Consider the data:

Xll X21 Xpl
X12 X2 X,

(X1 = C | Xe= X = o)
X]n X2n XP”

X represents n repeated independent observations on the jth
object, j =1,2,...p. The important point is n is small, 2, 5, or 10,
whereas p is large, such as a million.

Suppose Xj1,. .. Xj, measure y; with variability o?.

Problem: Maximum likelihood can give wrong estimates



Take n = 2 and suppose

X1 1 o 0 _
()92> N<( 1] ) 0 J2 ) j—l,z,P

i.e., we measure £; with 2 independent measurements, each coming
with a N(0,02) error added to it; we do this for a very large
number p of objects. What is the MLE of 27

Hpan, - - s 02 |X1, o Xp) = F(X1, - Xplpin, - - - fip; 0°)

p 2
= HHf XJI‘MJ?

j=1i=1
1
= (270%) P exp( FZZXJ,
j=1i=1
1 &[S
= (o) Pexp(— 55 D | 0~ %) + 205 - )|

1 Li=1

.
Il



fj =% = (1 + ij)/2 and

~ 1
7 = ;zzxﬂ—xn
p_/:l i=1
2 2
Xj1 + Xj2 +X12 Xj1 + Xj2
_jl_ + XJZ_?

(le_XJ22 1 ¢
o0l LSSy
P

.
I
—

I I

Sl ®l=

0= I 1
|—|

o
||
—

Since Xj1 — Xj» ~ N(0,202), j=1,2...,

1P
; Z(le — ij)2 p% 202, so that

— Z(le — Xj2)? P, %, and not 2.



Good estimates for 02 do exist, for example,

1 & p
52()9' — Xjp)? — 20°.

. p—00
Jj=1

What is going wrong here?

This is not a small p, large n problem, but a small n, large p
problem. i.e. a high dimensional problem, so needs care!

As p — oo, there are too many parameters to estimate and the
likelihood function is unable to see where information lies, so tries
to distribute it everywhere.

What is the way out? Go Bayesian!



There is a lot of information available on o2 (note
Zle(Xj — Xj2)? ~ 202x3) but very little on individual ;.
However, if p; are ‘similar’, there is a lot of information on where

they come from, because we get to see p samples, p large.

Suppose we are interested in yj. How can we use the above
information? Model as follows:

)_(j|uj,a2 ~ N(pj,0%/2), j=1,...p, independent observations.
JAQ may be assumed known, since a reliable estimate

o? = % J‘-’Zl(Xj — Xj»)? is available. Express the information
that yu; are ‘similar’ in the form:

pj,j =1,...pis a random sample (collection) from N(n,72).

Where do we get the  and 72, the prior mean and prior variance?

Marginally (or in predictive sense) )_(j,j =1,...pis a random
sample from N(ug, 72 + 02/2). Use this random sample.



Estimate n by 7j = X = %Z)_(J and 72 by
~ _ = +
72 = (A S0 (X - XP = 0)2)

Now one could pretend that the prior for (p1, ... pp) is N(7j, 7 2)
and compute the Bayes estimates for y;:

EulX1,...Xp) = (1 - B)X; + BX.
o /2
2/2
observations, replace 2 by n. This is called Empirical Bayes since
the prior is estimated using data. There is also a fully Bayesian
counter-part called Hierarchical Bayes.

. If instead of 2 observations, each sample has n

where B =
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Formal Methods for Model Selection
What is the best model for Gamma-ray burst afterglow?

Consider a simpler, abstract problem instead.
Suppose X having density f(x|6) is observed, with 6 being an
unknown element of the parameter space ©. We are interested in
comparing two models My and M;:

Mo : X has density f(x|0) where 6 € ©q;

M; : X has density f(x|0) where 6 € ©;. (27)

Simplify even further, and assume we want to test
Mg : 0 = 0y versus My : 0 # O, (28)

Frequentist: A (classical) significance test is derived. It is based on
a test statistic 7(X), large values of which are deemed to provide
evidence against the null hypothesis, My. If data X = x is
observed, with corresponding t = T(x), the P-value is

o = Py, (T(X) = T(x).



Example 6. Consider a random sample X, ..., X, from N(6,c?),
where o2 is known. Then X is sufficient for # and it has the
N(6,02/n) distribution. Noting that

T =T(X)=|y/n(X—6o) /o] is a natural test statistic to test
(28), one obtains the usual P-value as a = 2[1 — ®(t)], where

t =|v/n(x —6o) /o| and ® is the standard normal cumulative
distribution function.

What is a P-value and what does it say? P-value is the probability
under a (simple) null hypothesis of obtaining a value of a test
statistic that is at least as extreme as that observed in the sample
data.

To compute a P-value we take the observed value of the test
statistic to the reference distribution and check if it is likely or
unlikely under Mj.



2> Goodness-of-fit test

Example 7. Rutherford and Geiger (1910) gave the following
observed numbers of intervals of 1/8 minute when 0, 1, ...

a-particles are ejected by a specimen. Check if Poisson fits well.
Number 0 1 2 3 4 5

Obs. 57 203 383 525 532 408
Exp. 54 211 407 525 508 393

Number 6 7 8 9 10 11 12 or more
Obs. 273 139 45 27 10 4 2
Exp. 254 140 68 29 11 4 1

(0; — E;)?

Test statistic: T = Z 2
1

j=1

~ Xi—2 approximately for large n,

where k is the number of cells, O; is the observed and E; is the
expected count (estimated) for the ith cell.



Estimated Poisson intensity rate = (total number of particles
ejected)/(total number of intervals) = 100097/2608 =3.87.
k =13

P-value = P(T > 14.03) ~ 0.21 (under x2,).

Likelihood Ratio Criterion
Standard likelihood ratio criterion for comparing My and M; is

B f(x\ég) _ maxgee, f(x|0)
n = — = ) (29)
f(x|6)  maxgeooue, f(x[0)

0 < Ap <1, and large values of A\, provide evidence for My.
Reject My for small values.

Use A, (or a function of A,) as a test statistic if its distribution
under My can be derived. Otherwise, use the large sample result:

—2log(A\n) ==

2
N—oo “P1—P0’

under My where py and p; are dimensions of ©g and ©g U ©.
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Bayesian Model Selection

How does the Bayesian approach work?

X ~ f(x]0) and we want to test
My:60€©y versus M;:0€ 0. (30)

If ©9 and ©; are of the same dimension (eg: My : 6 < 0 and

M : 6 > 0), choose a prior density that assigns positive prior

probability to ©g and ©1. Then calculate the posterior probabilities

P{©¢|x}, P{©1|x} as well as the posterior odds ratio, namely,
P{©q|x}/P{O1|x}.

Find a threshold like 1/9 or 1/19, etc. to decide what constitutes
evidence against Hy.

Alternatively, let mg and 1 — g be the prior probabilities of ©¢ and
©1. Let gi(0) be the prior p.d.f. of 8 under ©; (or M;), so that

/@i gi(0)do = 1.



The prior in the previous approach is nothing but
m(0) = mogo(0)I{0 € O} + (1 — mo)g1(0)I{0 € ©1}.

Need not require any longer that ©¢ and ©; are of the same
dimension. Sharp null hypotheses are also covered. Proceed as
before and report posterior probabilities or posterior odds. To
compute these posterior quantities, note that the marginal density
of X under the prior m can be expressed as

me(x) = /@ £(x|0)(6) 0
- /@ A(l0)80(6) 90 + (1~ ) /@ F(xi0)gi(0)

and hence the posterior density of # given the data X = x as

r(0)x) = FXIOTO) { mof (x[0)go(0)/mx(x)  if 6 € Op;
mr(x) (1 —mo)f(x]0)g1(0)/mx(x) if 6 € O1.



It follows then that

P(Mlx) = P7(Golx) = T / (x[0)go(0) dO

70 f@ X|9)g0( )d9 .
7o Jo, F(x10)g0(6) d6 + (1 — 7o) Jo. F(xI0)g1(9) O
(1 —mo)
; /e (ia(8)do
(1= m0) Jo, F(x16)1(6) d
7o Jo F(x10)80(0) 40+ (1 — 7o) Jo F(x10)e1(0) d6°

PT(Milx) = P™(©1]x) =

One may also report the Bayes factor, which does not depend on
mo. The Bayes factor of My relative to My is defined as

P(©o|x) ,P(©0) feo f(x[0)go(0) do

B0 = Beu) P@1) ~ Jo Ffm @ e OV




Note:
e BFig =1/BFp;.
e Posterior odds ratio of My relative to My:

P(@0|X) N 0
P(@1x) (1 —m) Bfo.

e Posterior odds ratio of My relative to My = BFg; if mg = %

e The smaller the value of BFp1, the stronger the evidence
against Mj.

Testing as a model selection problem using Bayes factor illustrated
below: Jeffreys test.



Jeffreys Test for Normal Mean; 02> Unknown

X1, Xa, ..., X, a random sample from N(u,o2). We want to test

Mo : = po versusMy @ i # g

where g is some specified number.

Parameter 02 is common in the two models corresponding to M,
and M; and p occurs only in M;. Take the prior go(o) = 1/0 for o
under My. Under M, take the same prior for o and add a
conditional prior for u given o, namely

gi(rlo) = ~a().

where g»(+) is a p.d.f. Jeffreys suggested we should take g» to be
Cauchy, so
under Mg

1
oon(l+ p2/o?)
One may now find the Bayes factor BFg; using (31).

go(o) =

= Q|

1
g1(1,9) = —gi(ulo) = under M;.



Example 8. Einstein's theory of gravitation predicts the amount of
deflection of light deflected by gravitation. Eddington’s expedition
in 1919 (and other groups in 1922 and 1929) provided 4
observations: x; = 1.98,x; = 1.61,x3 = 1.18, x4 = 2.24 (all in
seconds as measures of angular deflection). Suppose they are
normally distributed around their predicted value p. Then

Xi,- -+, Xq are independent and identically distributed as N(u, o?).
Einstein's prediction is 4 = 1.75. Test My : = 1.75 versus

M : p # 1.75, where o2 is unknown.

Use the conventional priors of Jeffreys to calculate the Bayes factor.
BFy1 = 2.98.

The calculations with the given data lend some support to
Einstein's prediction. However, the evidence in the data isn't very
strong.



BIC

When we compare two models My : @ € ©g and My : 6 € ©1, what
does the Bayes factor

BFg; = -

(x|0)g1(0)df — mi(x)

f@o f(x[0)go(0) dO mo(x)
o f

measure?

mo(x) measures how well My fits the data x whereas m;(x)
measures how well My fits the same data, so BFy; is the relative
strength of the two models in the predictive sense. This can be
difficult to compute for complicated models, so any good
approximation is welcome.

Approximate marginal density m(x) of X for large sample size n:

m(x) = / 7(0)f(x|0) d =7



Laplace’s Method

m(x) = / (0)f(x]0) d0—/ fo,w

= /7r(6’) exp(Zlog f(xi|0)) d0 = /77((9) exp(nh(0)) do.

i=1
where h(0) = %27:1 log f(x;|6).

Consider any integral of the form

I = / q(0)e™) do

where g and h are smooth functions of § with h having a unique
maximum at 6.

If h has a unique sharp maximum at 0, then most contribution to
the integral / comes from the integral over a small neighborhood
(60— 6,0+ 6) of .



Study the behavior of | as n — oco. As n — o0, we have

G+6
|~ = / q(0)e™®) do.
0—9o

Laplace's method involves Taylor series expansion of g and h
about 6:

0+5 . o 1 r o
P [ a0 -0+ S0 -0+
x exp | nh(0) + b (D)(0 — 0) + SH"(0)(0 — 0 + -
b+ o 1 A A A
e"Wa(d) | [1 +(0 - 6)q'(0)/a0) + 50 )" (9) /q(Q)}
X exp [gh”(é)(e — 0| do.

Assume ¢ = —h"(f) > 0 and use a change of variable

t = /nc(6 — 0):



I~ emOg(h)—

5/ VA R R
<[ [H (60)/q(0) + £—q"(8)/q(B)| e 72 dt
_8/nc

onh(0) V2T
Jnc
onh(d) V2T
Jnc

q(d)

a(8) [1+0(n™1)] (32)

Apply (32) to m(x) = [ 7(0)f(x|0) d0 = [ w(6)exp(nh(0)) d0,
with g = 7 and ignore terms that stay bounded.

log(m(x) ~ nh(f) — Tlogn = log(f(x|A)) — Tlogn.



What Happens When ¢ is p > 1 Dimensional?

Simply replace (32) by its p dimensional counter part:

I = ™))/ P2 der(Ay(6)) " 2q(0)(1 + O(n 1))

where A,(0) denotes the Hessian of —h, i.e.,

INOE (—a;,.);ej”(")>pxp'

Now apply this to
m(x) = [ [7(0)f(x]|0)dO = [ --- [ 7(0)exp(nh(B))dB, with
g = m and ignore terms that stay bounded. Then

log(m(x) ~ nh(8) — 2 log n = log(f(x|8)) — & log n.



Schwarz (1978) proposed a criterion, known as the BIC, based on
(32) ignoring the terms that stay bounded as the sample size
n — oo (and general dimension p for 6):

BIC = log f(x|A) — (p/2) log n

This serves as an approximation to the logarithm of the integrated
likelihood of the model and is free from the choice of prior.

2log BFg1 is a commonly used evidential measure to compare the
support provided by the data x for My relative to M. Under the
above approximation we have,

f (x/00)
f(x|61)

2log(BFp1) =~ 2log < ) —(po — p1)logn.  (33)
This is the approximate Bayes factor based on the Bayesian
information criterion (BIC) due to Schwarz (1978). The term

(po — p1)log n can be considered a penalty for using a more
complex model.



AIC

Recall the likelihood ratio criterion: A\, =

f(xldo)
F(xI9)

P(My is rejected|My) = P(\p < ¢) = P(Xf,l_pU > —2log(c)) > 0,

so, from a frequentist point of view, a criterion based solely on the
likelihood ratio does not converge to a sure answer under M.

Akaike (1983) suggested a penalized likelihood criterion:
f (x/6o)
g == | —2(po — p1) (34)
(f(XWl)

which is based on the Akaike information criterion (AIC), namely,

~

AIC = 2log f(x|0) —2p

for a model f(x|#). The penalty for using a complex model is not
as drastic as that in BIC.
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Model Selection or Model Averaging?

Example 9. Velocities (km/second) of 82 galaxies in six
well-separated conic sections of the Corona Borealis region. How
many clusters?

Histogram of vel

ol o,

r T T T T 1
10000 15000 20000 25000 30000 35000

velocity



Consider mixture of normals:

f(x10) = [#xlo)

n k
= [ D_piotxiluiof) |

i=1 \j=1
where k is the number of mixture components, p; is the weight

given to the jth component, N(uj,af).

Models to consider:

k

M, : X has density ZpJ-d)(x,-mj,af), k=1,2...
j=1

i.e., My is a k component normal mixture.



Bayesian model selection procedure computes
m(x|My) = [ 7(0x)f(x|0x) dO, for each k of interest and picks
the one which gives the largest value.

Example 9 contd. Chib (1995), JASA:

k| o2 | log(m(x|My))
2 J? =02 -240.464
3 2 =0’ -228.620
3 | o2 unrestricted -224.138

J

3 component normal mixture model with unequal variances seems
best.



From the Bayesian point of view, a natural approach to model
uncertainty is to include all models, M,, under consideration
for future decisions.

i.e., Bypass the model-choice step entirely.

Unsuitable for scientific inference where selection of a model is
a must.

Suitable for prediction purposes, since underestimation of
uncertainty resulting from choosing model M is eliminated.



We have © = U, Oy,

f(y‘e) = fk(y\ek) if 6 ¢ O and

7T(0) = pkgk(ak) if 0 € O,
where px = P.(My) is the prior probability of My and g integrates
to 1 over ©. Therefore, given the sample x = (x1,...xn),
f(x|0)m(0)

m(x)

) m’;ﬁ() f(x|0k)8k(0)lo, (k)
k

- ZP(MkIX)gk(Gk\X)/@k(Gk)-
p

m(0x) =




Predictive density m(y|x) given the sample x = (x1,...xp) is what
is needed. This is given by

m(y[x) = /ef(y0)7T(0|x)d0
- ZP(Mk’X)/ fi(y10k) gk (Ok|x) dO)
= ZP’V’k!X k(y[x),

which is clearly obtained by averaging over all models.



Minimum Description Length

Model fitting is like describing the data in a compact form. A
model is better if it can provide a more compact description, or if it
can compress the data more, or if it can be transmitted with fewer
bits. Given a set of models to describe a data set, the best model is
the one which provides the shortest description length.

In general one needs log,(n) bits to transmit n, but patterns can
reduce the description length.

100---0: 1 followed by a million 0's

1010---10: pair 10 repeated a million times



If data x is known to arise from a probability density p, then the
optimal code length (in an average sense) is given by — log p(x).

The optimal code length of — log p(x) is valid only in the discrete
case. What happens in the continuous case? Discretize x and
denote it by [x] = [x]s where 0 denotes the precision. This means
we consider

[x]4+d/2

P(x] — 6/2 < X < [x] +6/2) = /[ N OLTC

instead of p(x) itself as far as coding of x is considered when x is
one-dimensional. In the r-dimensional case, replace the density
p(x) by the probability of the r-dimensional cube of side §
containing x, namely p([x])d" = p(x)d", so that the optimal code
length changes to — log p(x) — rlogd.



MDL for Estimation or Model Fitting

Consider data x = x” = (x1, x2,...,Xn), and suppose
F={f(x"|0): 0 € ©}

is the collection of models of interest. Further, let 7(6) be a prior
density for 6. Given a value of 6 (or a model), the optimal code
length for describing x" is — log f(x"|6), but since 6 is unknown, its
description requires a further —log () bits on average. Therefore
the optimal code length is obtained upon minimizing

DL(0) = — log w(0) — log f(x"|6), (35)

so that MDL amounts to seeking that model which minimizes the
sum of

(i) the length, in bits, of the description of the model, and

(ii) the length, in bits, of data when encoded with the help of the
model.



The posterior density of 6 given the data x” is

f(x"|0)m(6)

(o) = T

(36)

where m(y) is the marginal or predictive density. Minimizing
DL(0) = —log m(0) — log f(x"]|6) = — log{f (x"|0)7(0)}

over 0 is equivalent to maximizing 7(6|x"). Thus MDL for
estimation or model fitting is equivalent to finding the highest
posterior density (HPD) estimate of 6.

Consider the case of F having model parameters of different
dimensions. Consider the continuous case and discretization.
Denote k-dimensional by 0¥ = (61,62,...,60). Then



DL(6%)
= —log{m([6"]s,)d7} — log{f([x"]5[0"]5, )57}
= —log([6"]s,) — klog 6x — log f([x"]5,][6%]5,) — nlog o
~ —logm(0%) — klog &, — logf (x"|0%) — nlog d.

Note that the term —nlog dr is common across all models, so it
can be ignored. However, the term —k log d, indicating the
dimension of 6 in the model varies and is influential. According to
Rissanen, §, = 1/+/n is optimal, in which case

DL(6%) ~ —logf (x"|0%) — log w(6%) + ﬁlogn—i— constant . (37)
g 2
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