
Introdu
tion to Bayesian Inferen
eMohan DelampadyStatisti
s and Mathemati
s UnitIndian Statisti
al Institute, BangaloreJuly, 2010



Outline1 Statisti
al Inferen
e2 Frequentist Statisti
s3 Conditioning on Data4 The Bayesian Re
ipe5 Inferen
e for Binomial proportion6 Inferen
e With Normals/Gaussians7 Bayesian Computations8 Empiri
al Bayes Methods for High Dimensional Problems9 Formal Methods for Model Sele
tion10 Bayesian Model Sele
tion11 Model Sele
tion or Model Averaging?12 Referen
es



Outline1 Statisti
al Inferen
e2 Frequentist Statisti
s3 Conditioning on Data4 The Bayesian Re
ipe5 Inferen
e for Binomial proportion6 Inferen
e With Normals/Gaussians7 Bayesian Computations8 Empiri
al Bayes Methods for High Dimensional Problems9 Formal Methods for Model Sele
tion10 Bayesian Model Sele
tion11 Model Sele
tion or Model Averaging?12 Referen
es



What is Statisti
al Inferen
e?It is an inverse problem as in `Toy Example':Example 1 (Toy). Suppose a million 
andidate stars are examinedfor the presen
e of planetary systems asso
iated with them. If 272`su

esses' are noti
ed, how likely that the su

ess rate is 1%,0.1%, 0.01%, · · · for the entire universe?Probability models for observed data involve dire
t probabilities:Example 2. An astronomi
al study involved 100 galaxies of whi
h20 are Seyfert galaxies and the rest are starburst galaxies. Toillustrate generalization of 
ertain 
on
lusions, say 10 of these 100galaxies are randomly drawn. How many galaxies drawn will beSeyfert galaxies?This is exa
tly like an arti�
ial problem involving an urn having 100marbles of whi
h 20 are red and the rest blue. 10 marbles aredrawn at random with repla
ement (repeatedly, one by one, afterrepla
ing the one previously drawn and mixing the marbles well).How many marbles drawn will be red?



Data and ModelsX = number of Seyfert galaxies (red marbles) in the sample (out ofsample size n = 10)P(X = k |θ) =

(nk)θk(1− θ)(n−k), k = 0, 1, . . . n (1)In (1) θ is the proportion of Seyfert galaxies (red marbles) in theurn, whi
h is also the probability of drawing a Seyfert galaxy atea
h draw. In Example 2, θ = 20100 = 0.2 and n = 10. So,P(X = 0|θ = 0.2) = 0.810, P(X = 1|θ = 0.2) = 10× 0.2× 0.89,and so on.



In pra
ti
e, as in `Toy Example', θ is unknown and inferen
e aboutit is the question to solve.In the Seyfert/starburst galaxy example, if θ is not known and 3galaxies out of 10 turned out to be Seyfert, one 
ould ask:how likely is θ = 0.1, or 0.2 or 0.3 or . . .?Thus inferen
e about θ is an inverse problem:Causes (parameters) ←− E�e
ts (observations)



How does this inversion work?The dire
t probability model P(X = k |θ) provides a likelihoodfun
tion for the unknown parameter θ when data X = x isobserved:l(θ|x) = f (x |θ) (= P(X = x |θ) when X is a dis
rete randomvariable) as fun
tion of θ for given x .Interpretation: f (x |θ) says how likely x is under di�erent θ or themodel P(.|θ), so if x is observed, thenP(X = x |θ) = f (x |θ) = l(θ|x) should be able to indi
ate what thelikelihood of di�erent θ values or P(.|θ) are for that x .As a fun
tion of x for �xed θ P(X = x |θ) is a probability massfun
tion or density, but as a fun
tion of θ for �xed x , it has no su
hmeaning, but just a measure of likelihood.



After an experiment is 
ondu
ted and seeing data x , the only entityavailable to 
onvey the information about θ obtained from theexperiment is l(θ|x).For the Urn Example we have l(θ|X = 3) ∝ θ3(1− θ)7:
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Maximum Likelihood Estimation (MLE): If l(θ|x) measures thelikelihood of di�erent θ (or the 
orresponding models P(.|θ)), just�nd that θ = θ̂ whi
h maximizes the likelihood.For model (1)
θ̂ = θ̂(x) = x/n = sample proportion of su

esses .This is only an estimate. How good is it? What is the possibleerror in estimation?Likelihood fun
tion l(θ|x) has nothing to say about these.
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Frequentist Statisti
sConsider repeating this experiment again and again. Then one 
anlook at all possible sample data. i.e. all possible x values. Utilizelong-run average behaviour of the MLE. i.e. treat θ̂ as a randomquantity by repla
ing x by X in θ̂(x). i.e. look at X/n where X 
antake all possible values, 0, 1, . . . n.X ∼ Binomial(n, θ) with the probability model (1). Noting thatthe varian
e of su
h an X is nθ(1− θ), one obtains the varian
e ofX/n to be θ(1− θ)/n, whi
h 
an be estimated by θ̂(1− θ̂)/n. Ameasure of estimation error of θ̂ is the estimated standard deviationof X/n, namely, √θ̂(1− θ̂)/n. For further development we needlarge n, so that we 
an apply the Law of Large Numbers and theCentral Limit Theorem to X/n. Then, the estimator will be 
loseto the true θ probabilisti
ally and also, it is approximatelydistributed like a Gaussian random variable with mean θ andvarian
e θ(1− θ)/n.



Con�den
e StatementsSpe
i�
ally, for large n, approximately
θ̂ − θ√

θ(1− θ)/n ∼ N(0, 1),or
θ̂ − θ√

θ̂(1− θ̂)/n ∼ N(0, 1). (2)From (2), an approximate 95% 
on�den
e interval for θ (when n islarge) is
θ̂ ± 2√θ̂(1− θ̂)/n.



What Does This Mean?Simply, if we sample again and again, in about 19 
ases out of 20this random interval
(

θ̂(X )− 2√θ̂(X )(1− θ̂(X ))/n, θ̂(X ) + 2√θ̂(X )(1− θ̂(X ))/n)will 
ontain the true unknown value of θ.Fine, but what 
an we say about the one interval that we 
an
onstru
t for the given sample or data x?Nothing; either θ is inside
(0.3− 2√0.3× 0.7/10, 0.3 + 2√0.3× 0.7/10) or it is outside.Can we say 0.3− 2√0.3× 0.7/10 ≤ θ ≤ 0.3 + 2√0.3× 0.7/10with 95% 
han
e?Not in this approa
h. If θ is treated as �xed unknown 
onstant,
onditioning on the given data X = x is meaningless.
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Conditioning on Data
• What other approa
h is possible, then?
• How does one 
ondition on data?
• How does one talk about probability of a model or ahypothesis?Example 3.(not from physi
s but medi
ine) Consider a blood testfor a 
ertain disease; result is positive (x = 1) or negative (x = 0).Suppose θ1 denotes disease is present, θ2 disease not present.Test is not 
on�rmatory. Instead the probability distribution of Xfor di�erent θ is:x = 0 x = 1 What does it say?

θ1 0.2 0.8 Test is +ve 80% of time if `disease present'
θ2 0.7 0.3 Test is −ve 70% of time if `disease not present'If for a parti
ular patient the test result 
omes out to be `positive',what should the do
tor 
on
lude?



What is the Question?
What is to be answered is `what are the 
han
es that the disease ispresent given that the test is positive?' i.e., P(θ = θ1|X = 1).What we have is P(X = 1|θ = θ1) and P(X = 1|θ = θ2).We have the `wrong' 
onditional probabilities. They need to be`reversed'. But how?
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The Bayesian Re
ipeRe
all Bayes Theorem: If A and B are two events,P(A|B) =
P(A and B)P(B)assuming P(B) > 0. Therefore, P(A and B) = P(A|B)P(B), andby symmetry P(A and B) = P(B|A)P(A). Consequently, if P(B|A)is given and P(A|B) is desired, noteP(A|B) =

P(A and B)P(B)
=

P(B|A)P(A)P(B)
.Rule of total probability says,P(B) = P(B and Ω) = P(B and A) + P(B and A
)

= P(B|A)P(A) + P(B|A
)(1− P(A)), soP(A|B) =
P(B|A)P(A)P(B|A)P(A) + P(B|A
)(1− P(A))

(3)



Bayes Theorem allows one to invert a 
ertain 
onditional probabilityto get a 
ertain other 
onditional probability. How does this helpus?In our example we want P(θ = θ1|X = 1). From (3),P(θ = θ1 | X = 1)
=

P(X = 1 | θ = θ1)P(θ = θ1)P(X = 1 | θ1)P(θ = θ1) + P(X = 1 | θ2)P(θ = θ2) . (4)So, all we need is P(θ = θ1), whi
h is simply the probability that arandomly 
hosen person has this disease, or just the `prevalen
e' ofthis disease in the 
on
erned population. The good do
tor mostlikely has this information from his experien
e in the �eld. But thisis not part of the experimental data. This is pre-experimentalinformation or prior information. If we have this, and are willing toin
orporate it in the analysis, we get the post-experimentalinformation or posterior information in the form of P(θ|X = x).



In our example, if we take P(θ = θ1) = 0.05 or 5%, we getP(θ = θ1 | X = 1) =
0.8× 0.050.8× 0.05 + 0.3× 0.95 =

0.040.325 = 0.123whi
h is only 12.3% and P(θ = θ2 | X = 1) = 0.877 or 87.7%.Formula (4) whi
h shows how to `invert' the given 
onditionalprobabilities, P(X = x | θ) into the 
onditional probabilities ofinterest, P(θ | X = x) is an instan
e of the Bayes Theorem, andhen
e the Theory of Inverse Probability (usage at the time of Bayesand Lapla
e, late eighteenth 
entury and even by Je�reys), isknown these days as Bayesian inferen
e.



Ingredients of Bayesian inferen
e:likelihood fun
tion, l(θ|x); θ 
an be a parameterve
torprior probability, π(θ)Combining the two, one gets the posterior probability density ormass fun
tion
π(θ | x) =






π(θ)l(θ|x)
Pj π(θj )l(θj |x) if θ is dis
rete;

π(θ)l(θ|x)
R

π(u)l(u|x) du if θ is 
ontinuous. (5)
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Inferen
e for Binomial proportionExample 2 
ontd. Suppose we have no spe
ial informationavailable on θ. Then assume θ is uniformly distributed on theinterval (0, 1). i.e., the prior density is π(θ) = 1, 0 < θ < 1.This is a 
hoi
e of non-informative or vague or referen
e prior.Often, Bayesian inferen
e from su
h a prior 
oin
ides with 
lassi
alinferen
e.In the Example then the posterior density of θ given x is
π(θ|x) =

π(θ)l(θ|x)∫
π(u)l(u|x) du

=
(n + 1)!x!(n − x)!θx(1− θ)n−x , 0 < θ < 1.As a fun
tion of θ, this is the same as the likelihood fun
tionl(θ|x) ∝ θx(1− θ)n−x , and so maximizing the posterior probabilitydensity will give the same estimate as the maximum likelihoodestimate!



In�uen
e of the PriorIf we had some knowledge about θ whi
h 
an be summarized in theform of a Beta prior distribution with parameters α and γ, theposterior will also be Beta with parameters x + α and n − x + γ.Su
h priors whi
h result in posteriors from the same `family' are
alled `natural 
onjugate priors'. Robustness?
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Robustness?Obje
tive Bayesian Analysis:Invariant priors: Je�reysReferen
e priors: Bernardo, Je�reysMaximum entropy priors: Jaynes



In Example 2, what π(θ|x) says is that the un
ertainty in θ 
annow be des
ribed in terms of an a
tual probability distribution
on
entrated around the maximum likelihood estimate θ̂ = x/n.However, the interpretation of θ̂ as an estimate of θ is quitedi�erent. It is the most probable value of the unknown parameter θ
onditional on the sample data x ; it is 
alled the `maximum aposteriori estimate (MAP)' or the `highest posterior densityestimate (HPD)'.There is no need to mimi
 the MLE anymore. We have a genuineprobability distribution, namely, the posterior distribution toquantify our post-experimental knowledge about θ. Indeed theusual Bayes estimate is the mean of the posterior distribution whi
hminimizes the posterior dispersion:E [(θ − θ̂B)2|x ] = mina E [(θ − a)2|x ],when θ̂B = E (θ|x).



If we 
hoose θ̂B as the estimate of θ, we get a natural measure ofvariability of this estimate in the form of the posterior varian
e:E [(θ − E (θ|x))2|x ]. Therefore the posterior standard deviation is anatural measure of estimation error. i.e., our estimate is
θ̂B ±√E [(θ − E (θ|x))2|x ].In fa
t, we 
an say mu
h more. For any interval around θ̂ we 
an
ompute the (posterior) probability of it 
ontaining the trueparameter θ. In other words, a statement su
h asP(θ̂B − k1 ≤ θ ≤ θ̂B + k2|x) = 0.95is perfe
tly meaningful.All these inferen
es are 
onditional on the given data.



In Example 2, if the prior is a Beta distribution with parameters αand γ, then θ|x will have a Beta(x + α, n − x + γ) distribution, sothe Bayes estimate of θ will be
θ̂B =

(x + α)

(n + α + γ)
=

nn + α + γ

xn +
α + γn + α + γ

α

α + γ
.This is a 
onvex 
ombination of sample mean and prior mean, withthe weights depending upon the sample size and the strength of theprior information as measured by the values of α and γ.Bayesian inferen
e relies on the 
onditional probability language torevise one's knowledge. In the above example, prior to the
olle
tion of sample data one had some (vague, perhaps)information on θ. Then 
ame the sample data. Combining themodel density of this data with the prior density one gets theposterior density, the 
onditional density of θ given the data. Fromnow on until further data is available, this posterior distribution of

θ is the only relevant information as far as θ is 
on
erned.
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Inferen
e With Normals/GaussiansGaussian PDFf (x |µ, σ2) =
1√2πσ2 e− (x−µ)22σ2 over [−∞,∞] (6)Common abbreviated notation: X ∼ N(µ, σ2)Parameters

µ = E (X ) ≡ 〈X 〉 ≡ ∫ x f (x |µ, σ2) dx
σ2 = E (X − µ)2 ≡ 〈(X − µ)2〉 ≡ ∫ (x − µ)2 f (x |µ, σ2) dx



Inferen
e About a Normal MeanExample 4. Fit a normal/Gaussian model to the `globular 
lusterluminosity fun
tions' data. The set-up is as follows.Our data 
onsist of n measurements, Xi = µ + ǫi .Suppose the noise 
ontributions are independent, and
ǫi ∼ N(0, σ2). Denoting by x, the random sample (x1, . . . xn),f (x|µ, σ2) =

∏i f (xi |µ, σ2)
=

∏i 1√2πσ2 e− 12σ2 (xi−µ)2
= (2πσ2)−n/2e− 12σ2 Pni=1(xi−µ)2
= (2πσ2)−n/2e− 12σ2 [Pni=1(xi−x̄)2+n(x̄−µ)2].Note (X̄ , s2 =

∑ni=1(Xi − X̄ )2/(n − 1)) is su�
ient for theparameters (µ, σ2). This is a very substantial data 
ompression.



Inferen
e About a Normal Mean, σ2 known(Not useful, but easy to understand.)l(µ|x) ∝ f (x|µ, σ2) ∝ e− n2σ2 (µ−x̄)2 ,so that X̄ is su�
ient. Also, X̄ |µ ∼ N(µ, σ2/n). If an informativeprior, µ ∼ N(µ0, τ2) is 
hosen for µ,
π(µ|x) ∝ l(µ|x)π(µ)

∝ e− 12» n(µ−x̄)2
σ2 +

(µ−µ0)2
τ2 –

∝ e− τ2+σ2/n2τ2σ2/n „

µ− τ2σ2/n
τ2+σ2/n (

µ0
τ2 + nx̄

σ2 )

«2
.i.e., µ|x ∼ N(µ̂, δ2):

µ̂ =
τ2σ2/n

τ2 + σ2/n (
µ0
τ2 +

nx̄
σ2 )

=
τ2

τ2 + σ2/n x̄ +
σ2/n

τ2 + σ2/nµ0.



µ̂ is the Bayes estimate of µ, whi
h is just a weighted average ofsample mean x̄ and prior mean µ0.
δ2 is the posterior varian
e of µ and

δ2 =
τ2σ2/n

τ2 + σ2/n =
σ2n τ2

τ2 + σ2/n .Therefore µ̂± δ is our estimate for µ and µ̂± 2δ is a 95% HPD(Bayesian) 
redible interval for µ.What happens as τ2 →∞, or as the prior be
omes more and more�at?
µ̂→ x̄ , δ → σ√ni.e., Je�reys' prior π(µ) = C reprodu
es frequentist inferen
e.



Inferen
e About a Normal Mean, σ2 unknownOur observations X1, . . .Xn is a random sample from a Gaussianpopulation with both mean µ and varian
e σ2 unknown.We are only interested in µ.How do we get rid of the nuisan
e parameter σ2?Bayesian inferen
e uses posterior distribution whi
h is a probabilitydistribution, so σ2 should be integrated out from the joint posteriordistribution of µ and σ2.l(µ, σ2|x) = (2πσ2)−n/2e− 12σ2 [Pni=1(xi−x̄)2+n(µ−x̄)2].Start with π(µ, σ2) and get
π(µ, σ2|x) ∝ π(µ, σ2)l(µ, σ2|x)and then get
π(µ|x) =

∫ ∞0 π(µ, σ2|x) dσ2.



Use Je�reys' prior π(µ, σ2) ∝ 1/σ2: Flat prior for µ whi
h is alo
ation or translation parameter, and an independent �at prior forlog(σ) whi
h is again a lo
ation parameter, being the log of a s
aleparameter.
π(µ, σ2|x) ∝ 1

σ2 l(µ, σ2|x)
π(µ|x) ∝ ∫ ∞0 (σ2)−(n+1)/2e− 12σ2 [Pni=1(xi−x̄)2+n(µ−x̄)2] dσ2

∝
[
(n − 1)s2 + n(µ− x̄)2]−n/2

∝
[1 +

1n − 1 n(µ− x̄)2s2 ]−n/2
∝ density of Students tn−1.



√n(µ− x̄)s | data ∼ tn−1P(x̄ − tn−1(0.975) s√n ≤ µ ≤ x̄ + tn−1(0.975) s√n | data) = 95%i.e., the Je�reys' translation-s
ale invariant prior reprodu
esfrequentist inferen
e.What if there are some 
onstraints on µ su
h as −A ≤ µ ≤ B , forexample, µ > 0? We will get a trun
ated tn−1 instead, but thepro
edure will go through with minimal 
hange.Example 4 
ontd. (GCL Data) n = 360, x̄ = 14.46, s = 1.19.
√360(µ− 14.46)1.19 | data ∼ t359

µ| data ∼ N(14.46, 0.0632) approximately.
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Estimate for mean GCL is 14.46± 0.063 and 95% HPD 
redibleinterval is (14.33, 14.59).



Comparing two Normal MeansExample 5. Che
k whether the mean distan
e indi
ators in thetwo populations of LMC datasets are di�erent. Model as follows:X1, . . .Xn1 is a random sample from N(µ1, σ21).Y1, . . .Yn2 is a random sample from N(µ2, σ22).Samples are independent.Unknown parameters: (µ1, µ2, σ21 , σ22)Quantity of interest: η = µ1 − µ2Nuisan
e parameters: σ21 and σ22Case 1. σ21 = σ22 . Then su�
ient statisti
 for (µ1, µ2, σ2) is(X̄ , Ȳ , s2 = 1n1+n2−2 (∑n1i=1(Xi − X̄ )2 +
∑n2j=1(Yj − Ȳ )2))X̄ |µ1, µ2, σ2 ∼ N(µ1, σ2/n1), Ȳ |µ1, µ2, σ2 ∼ N(µ2, σ2/n2),

(n1 + n2 − 2)s2|µ1, µ2, σ2 ∼ σ2χ2n1+n2−2.These three are independently distributed.



X̄ − Ȳ |µ1, µ2, σ2 ∼ N(η, σ2( 1n1 + 1n2 )), η = µ1 − µ2Use Je�reys' lo
ation-s
ale invariant prior π(µ1, µ2, σ2) ∝ 1/σ2
η|σ2, x, y ∼ N(x̄ − ȳ , σ2( 1n1 +

1n2 )), and
π(η, σ2|x, y) ∝ π(η|σ2, x, y)π(σ2|s2), (7)Integrate out σ2 from (7) as in the previous example to get

η − (x̄ − ȳ)s√ 1n1 + 1n2 | x, y ∼ tn1+n2−2.95% HPD 
redible interval for η = µ1 − µ2 isx̄ − ȳ ± tn1+n2−2(0.975)s√ 1n1 +
1n2 ,same as frequentist t-interval.



Example 5 
ontd. We have x̄ = 18.539, ȳ = 18.473, n1 = 13,n2 = 12 and s2 = 0.0085. η̂ = x̄ − ȳ = 0.066, s√ 1n1 + 1n2 = 0.037,t23(0.975) = 2.069.95% HPD 
redible interval for η = µ1 − µ2:
(0.066− 2.069× 0.037, 0.066 + 2.069× 0.037) = (−0.011, 0.142).
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Case 2. σ21 and σ22 are not known to be equal.From the one-sample normal example, note that
(X̄ , s2X = 1n1−1∑n1i=1(Xi − X̄ )2) su�
ient for (µ1, σ21), and
(Ȳ , s2Y = 1n2−1∑n2j=1(Yj − Ȳ )2) su�
ient for (µ2, σ22).Making inferen
e on η = µ1 − µ2 when σ21 and σ22 are not assumedto be equal is 
alled the Behrens-Fisher problem for whi
h thefrequentist solution is not very straight forward, but the Bayessolution is.



X̄ |µ1, σ21 ∼ N(µ1, σ21/n1), (n1 − 1)s2X |µ1, σ21 ∼ σ2χ2n1−1, and areindependently distributed.Ȳ |µ2, σ22 ∼ N(µ2, σ22/n2), (n2 − 1)s2Y |µ2, σ22 ∼ σ2χ2n2−1, and areindependently distributed.X and Y samples are independent.Use Je�reys' prior π(µ1, µ2, σ21 , σ22) ∝ 1/σ21 × 1/σ22Cal
ulations similar to those in one-sample 
ase give:
√n1(µ1 − x̄)sX | data ∼ tn1−1,
√n2(µ2 − ȳ)sY | data ∼ tn2−1, (8)and these two are independent.



Posterior distribution of η = µ1 − µ2 given the data is non-standard(di�eren
e of two independent t variables) but not di�
ult to get.Use Monte-Carlo Sampling: Simply generate (µ1, µ2) repeatedlyfrom (8) and 
onstru
t a histogram for η = µ1 − µ2Example 5 (LMC) 
ontd. Looks slightly di�erent.
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Posterior mean of η = µ1 − µ2 is
η̂ = E (µ1 − µ2| data) = 0.0656. (9)95% HPD 
redible interval for η = µ1 − µ2 is

=

{
(−0.011, 0.142) equal varian
e;
(−0.014, 0.147) unequal varian
e. (10)
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Bayesian ComputationsBayesian analysis requires 
omputation of expe
tations andquantiles of probability distributions (posterior distributions). Mostoften posterior distributions will not be standard distributions.Then posterior quantities of inferential interest 
annot be 
omputedin 
losed form. Spe
ial te
hniques are needed.Example M1. Suppose X1,X2, . . . ,Xk are observed number of
ertain type of stars in k similar regions. Model them asindependent Poisson 
ounts: Xi ∼ Poisson(θi). θi are a priori
onsidered related. νi = log(θi) is the ith element of ν and suppose
ν ∼ Nk (µ1, τ2 {(1− ρ)Ik + ρ11′}) ,where 1 is the k-ve
tor with all elements being 1, and µ, τ2 and ρare known 
onstants. Thenf (x |ν) = exp(− k∑i=1{eνi − νixi}) /

k∏i=1 xi !.



π(ν) ∝ exp(− 12τ2 (ν − µ1)′ ((1− ρ)Ik + ρ11′)−1
(ν − µ1))

π(ν|x) ∝exp{−∑ki=1{eνi − νixi} − (ν−µ1)′((1−ρ)Ik+ρ11′)−1
(ν−µ1)2τ2 }.To obtain the posterior mean of θj , 
omputeEπ(θj |x) = Eπ(exp(νj)|x) =

∫
Rk exp(νj)g(ν|x) dν∫

Rk g(ν|x) dν
,where g(ν|x) =exp{−∑ki=1{eνi − νixi} − (ν−µ1)′((1−ρ)Ik+ρ11′)−1

(ν−µ1)2τ2 }.



This is a ratio of two k-dimensional integrals, and as k grows, theintegrals be
ome less and less easy to work with. Numeri
alintegration te
hniques fail to be an e�
ient te
hnique in this 
ase.This problem, known as the 
urse of dimensionality, is due to thefa
t that the size of the part of the spa
e that is not relevant forthe 
omputation of the integral grows very fast with the dimension.Consequently, the error in approximation asso
iated with thisnumeri
al method in
reases as the power of the dimension k ,making the te
hnique ine�
ient.The re
ent popularity of Bayesian approa
h to statisti
alappli
ations is mainly due to advan
es in statisti
al 
omputing.These in
lude the E-M algorithm and the Markov 
hain MonteCarlo (MCMC) sampling te
hniques.



Monte Carlo SamplingConsider an expe
tation that is not available in 
losed form. Toestimate a population mean, gather a large sample from thispopulation and 
onsider the 
orresponding sample mean. The Lawof Large Numbers guarantees that the estimate will be goodprovided the sample is large enough. Spe
i�
ally, let f be aprobability density fun
tion (or a mass fun
tion) and suppose thequantity of interest is a �nite expe
tation of the formEf h(X ) =

∫

X
h(x)f (x) dx (11)(or the 
orresponding sum in the dis
rete 
ase). If i.i.d.observations X 1,X 2, . . . 
an be generated from the density f , thenh̄m =

1m m∑i=1 h(X i) (12)
onverges in probability to Ef h(X ). This justi�es using h̄m as anapproximation for Ef h(X ) for large m.



To provide a measure of a

ura
y or the extent of error in theapproximation, 
ompute the standard error. If Varf h(X ) is �nite,then Varf (h̄m) = Varf h(X )/m. Further,Varf h(X ) = Ef h2(X )−
(Ef h(X )

)2 
an be estimated bys2m =
1m m∑i=1(h(X i)− h̄m)2,and hen
e the standard error of h̄m 
an be estimated by1√msm =
1m( m∑i=1(h(X i)− h̄m)2)1/2.Con�den
e intervals for Ef h(X ): Using CLT

√m (h̄m − Ef h(X )
)sm −→m→∞

N(0, 1), so
(h̄m − zα/2sm/

√m, h̄m + zα/2sm/
√m) 
an be used as anapproximate 100(1− α)% 
on�den
e interval for Ef h(X ), withzα/2 denoting the 100(1− α/2)% quantile of standard normal.



What Does This Say?If we want to approximate the posterior mean, try to generate i.i.d.observations from the posterior distribution and 
onsider the meanof this sample. This is rarely useful be
ause most often theposterior distribution will be a non-standard distribution whi
h maynot easily allow sampling from it. What are some other possibilities?Example M2. Suppose X is N(θ, σ2) with known σ2 and aCau
hy(µ, τ) prior on θ is 
onsidered appropriate. Then
π(θ|x) ∝ exp (−(θ − x)2/(2σ2)) (τ2 + (θ − µ)2)−1

,and hen
e the posterior mean isEπ(θ|x) =

∫∞
−∞ θ exp(− (θ−x)22σ2 ) (τ2 + (θ − µ)2)−1 dθ

∫∞
−∞ exp(− (θ−x)22σ2 ) (τ2 + (θ − µ)2)−1 dθ

=

∫∞
−∞ θ

{ 1
σφ
(

θ−x
σ

)} (
τ2 + (θ − µ)2)−1 dθ

∫∞
−∞

{ 1
σφ
(

θ−x
σ

)}
(τ2 + (θ − µ)2)−1 dθ

,where φ denotes the density of standard normal.



Eπ(θ|x) is the ratio of expe
tation of h(θ) = θ/(τ2 + (θ − µ)2) tothat of h(θ) = 1/(τ2 + (θ − µ)2), both expe
tations being withrespe
t to the N(x , σ2) distribution. Therefore, we simply sample
θ1, θ2, . . . from N(x , σ2) and useÊπ(θ|x) =

∑mi=1 θi (τ2 + (θi − µ)2)−1
∑mi=1 (τ2 + (θi − µ)2)−1as our Monte Carlo estimate of Eπ(θ|x). Note that (11) and (12)are applied separately to both the numerator and denominator, butusing the same sample of θ's. It is unwise to assume that theproblem has been 
ompletely solved. The sample of θ's generatedfrom N(x , σ2) will tend to 
on
entrate around x , whereas tosatisfa
torily a

ount for the 
ontribution of the Cau
hy prior tothe posterior mean, a signi�
ant portion of the θ's should 
omefrom the tails of the posterior distribution.



Why not express the posterior mean in the formEπ(θ|x) =

∫∞
−∞ θ exp(− (θ−x)22σ2 )π(θ) dθ

∫∞
−∞ exp(− (θ−x)22σ2 )π(θ) dθ

,and then sample θ's from Cau
hy(µ, τ) and use the approximationÊπ(θ|x) =

∑mi=1 θi exp(− (θi−x)22σ2 )

∑mi=1 exp(− (θi−x)22σ2 ) ?However, this is also not satisfa
tory be
ause the tails of theposterior distribution are not as heavy as those of the Cau
hy prior,and there will be ex
ess sampling from the tails relative to the
enter. So the 
onvergen
e of the approximation will be slowerresulting in a larger error in approximation (for a �xed m). Ideally,therefore, sampling should be from the posterior distribution itself.With this view in mind, a variation of the above theme, 
alledMonte Carlo importan
e sampling has been developed.



Consider (11) again. Suppose that it is di�
ult or expensive tosample dire
tly from f , but there exists a probability density u thatis very 
lose to f from whi
h it is easy to sample. Then we 
anrewrite (11) asEf h(X ) =

∫

X
h(x)f (x) dx =

∫

X
h(x)

f (x)u(x)
u(x) dx

=

∫

X
{h(x)w(x)} u(x) dx = Eu {h(X )w(X )} ,where w(x) = f (x)/u(x). Now apply (12) with f repla
ed by uand h repla
ed by hw . In other words, generate i.i.d. observationsX 1,X 2, . . . from the density u and 
omputehwm =

1m m∑i=1 h(X i)w(X i).The sampling density u is 
alled the importan
e fun
tion.



Markov Chain Monte Carlo MethodsA severe drawba
k of the standard Monte Carlo sampling/importan
e sampling: 
omplete determination of the fun
tionalform of the posterior density is needed for implementation.Situations where posterior distributions are in
ompletely spe
i�edor are spe
i�ed indire
tly 
annot be handled: joint posteriordistribution of the ve
tor of parameters is spe
i�ed in terms ofseveral 
onditional and marginal distributions, but not dire
tly.This 
overs a large range of Bayesian analysis be
ause a lot ofBayesian modeling is hierar
hi
al so that the joint posterior isdi�
ult to 
al
ulate but the 
onditional posteriors given parametersat di�erent levels of hierar
hy are easier to write down (and hen
esample from).



Markov Chains in MCMCA sequen
e of random variables {Xn}n≥0 is a Markov 
hain if forany n, given the 
urrent value, Xn, the past {Xj , j ≤ n− 1} and thefuture {Xj : j ≥ n + 1} are independent. In other words,P(A ∩ B|Xn) = P(A|Xn)P(B|Xn), (13)where A and B are events de�ned respe
tively in terms of the pastand the future.Important sub
lass: Markov 
hains with time homogeneous orstationary transition probabilities: the probability distribution ofXn+1 given Xn = x , and the past, Xj : j ≤ n − 1 depends only on xand does not depend on the values of Xj : j ≤ n − 1 or n.If the set S of values {Xn} 
an take, known as the state spa
e, is
ountable, this redu
es to spe
ifying the transition probabilitymatrix P ≡ ((pij)) where for any two values i , j in S , pij is theprobability that Xn+1 = j given Xn = i , i.e., of moving from state ito state j in one time unit.



For state spa
e S that is not 
ountable, spe
ify a transition kernelor transition fun
tion P(x , ·) where P(x ,A) is the probability ofmoving from x into A in one step, i.e., P(Xn+1 ∈ A|Xn = x).Given the transition probability and the probability distribution ofthe initial value X0, one 
an 
onstru
t the joint probabilitydistribution of {Xj : 0 ≤ j ≤ n} for any �nite n. i.e.,P(X0 = i0,X1 = i1, . . . ,Xn−1 = in−1,Xn = in)
= P(Xn = in|X0 = i0, . . . ,Xn−1 = in−1)
×P(X0 = i0,X1 = i1, . . .Xn−1 = in−1)

= pin−1inP(X0 = i0, . . . ,Xn−1 = in−1)
= P(X0 = i0)pi0i1pi1i2 . . . pin−1in .



A probability distribution π is 
alled stationary or invariant for atransition probability P or the asso
iated Markov 
hain {Xn} if it isthe 
ase that when the probability distribution of X0 is π then thesame is true for Xn for all n ≥ 1. Thus in the 
ountable state spa
e
ase a probability distribution π = {πi : i ∈ S} is stationary for atransition probability matrix P if for ea
h j in S ,P(X1 = j) =
∑i P(X1 = j |X0 = i)P(X0 = i)

=
∑i πipij = P(X0 = j) = πj . (14)In ve
tor notation it says π = (π1, π2, . . .) is a left eigenve
tor ofthe matrix P with eigenvalue 1 and
π = πP. (15)



Similarly, if S is a 
ontinuum, a probability distribution π withdensity p(x) is stationary for the transition kernel P(·, ·) if
π(A) =

∫A p(x) dx =

∫S P(x ,A)p(x) dxfor all A ⊂ S .A Markov 
hain {Xn} with a 
ountable state spa
e S and transitionprobability matrix P ≡ ((pij)) is said to be irredu
ible if for any twostates i and j the probability of the Markov 
hain visiting j startingfrom i is positive, i.e., for somen ≥ 1, p(n)ij ≡ P(Xn = j |X0 = i) > 0.A similar notion of irredu
ibility, known as Harris or Doeblinirredu
ibility exists for the general state spa
e 
ase also.



Theorem (Law of Large Lumbers for Markov Chains).
{Xn}n≥0 is a Markov 
hain with a 
ountable state spa
e S and atransition probability matrix P . Suppose it is irredu
ible and has astationary probability distribution π ≡ (πi : i ∈ S) as de�ned in(14). Then, for any bounded fun
tion h : S → R and for any initialdistribution of X0 1n n−1∑i=0 h(Xi )→∑j h(j)πj (16)in probability as n →∞.A similar law of large numbers (LLN) holds when the state spa
e Sis not 
ountable. The limit value in (16) will be the integral of hwith respe
t to the stationary distribution π. A su�
ient 
onditionfor the validity of this LLN is that the Markov 
hain {Xn} be Harrisirredu
ible and have a stationary distribution π.



How is this Useful?A probability distribution π on a set S is given. Want to 
omputethe �integral of h with respe
t to π�, whi
h redu
es to ∑j h(j)πj inthe 
ountable 
ase.Look for an irredu
ible Markov 
hain {Xn} with state spa
e S andstationary distribution π. Starting from some initial value X0, runthe Markov 
hain {Xj} for a period of time, say 0, 1, 2, . . . n − 1and 
onsider as an estimate
µn =

1n n−1∑0 h(Xj). (17)By the LLN (16), µn will be 
lose to ∑j h(j)πj for large n.This te
hnique is 
alled Markov 
hain Monte Carlo (MCMC).To approximate π(A) ≡
∑j∈A πj for some A ⊂ S simply 
onsider

πn(A) ≡ 1n n−1∑0 IA(Xj)→ π(A),where IA Xj 1 if Xj A and 0 otherwise.



An irredu
ible Markov 
hain {Xn} with a 
ountable state spa
e S is
alled aperiodi
 if for some i ∈ S the greatest 
ommon divisor,g.
.d. {n : p(n)ii > 0} = 1. Then, in addition to the LLN (16), thefollowing result on the 
onvergen
e of P(Xn = j) holds.
∑j |P(Xn = j)− πj | → 0 (18)as n →∞, for any initial distribution of X0. In other words, forlarge n the probability distribution of Xn will be 
lose to π. Thereexists a result similar to (18) for the general state spa
e 
ase also.This suggests that instead of doing one run of length n, one 
oulddo N independent runs ea
h of length m so that n = Nm and thenfrom the i th run use only the mth observation, say, Xm,i and
onsider the estimatẽ
µN,m ≡ 1N N∑i=1 h(Xm,i). (19)



Metropolis-Hastings AlgorithmVery general MCMC method with wide appli
ations. Idea is not todire
tly simulate from the given target density (whi
h may be
omputationally di�
ult), but to simulate an easy Markov 
hainthat has this target density as the stationary distribution.Let π be the target probability distribution on S , a �nite or
ountable set. Let Q ≡ ((qij)) be a transition probability matrixsu
h that for ea
h i , it is 
omputationally easy to generate asample from the distribution {qij : j ∈ S}. Generate a Markov
hain {Xn} as follows. If Xn = i , �rst sample from the distribution
{qij : j ∈ S} and denote that observation Yn. Then, 
hoose Xn+1from the two values Xn and Yn a

ording toP(Xn+1 = Yn|Xn,Yn) = ρ(Xn,Yn) = 1− P(Xn+1 = Xn|Xn,Yn),where the �a

eptan
e probability� ρ(·, ·) is given by

ρ(i , j) = min{πj
πi qjiqij , 1} for all (i , j) su
h that πiqij > 0.



{Xn} is a Markov 
hain with transition probability matrixP = ((pij)) given bypij =

{ qijρij j 6= i ,1− ∑k 6=i pik , j = i . (20)Q is 
alled the �proposal transition probability� and ρ the�a

eptan
e probability�. A signi�
ant feature of this transitionme
hanism P is that P and π satisfy
πipij = πjpji for all i , j . (21)This implies that for any j
∑i πipij = πj∑i pji = πj , (22)or, π is a stationary probability distribution for P .



Suppose S is irredu
ible with respe
t to Q and πi > 0 for all i in S .It 
an then be shown that P is irredu
ible, and be
ause it has astationary distribution π, LLN (16) is available. This algorithm isthus a very �exible and useful one. The 
hoi
e of Q is subje
t onlyto the 
ondition that S is irredu
ible with respe
t to Q. A su�
ient
ondition for the aperiodi
ity of P is that pii > 0 for some i orequivalently ∑j 6=1 qijρij < 1.A su�
ient 
ondition for this is that there exists a pair (i , j) su
hthat πiqij > 0 and πjqji < πiqij .Re
all that if P is aperiodi
, then both the LLN (16) and (18) hold.



If S is not �nite or 
ountable but is a 
ontinuum and the targetdistribution π(·) has a density p(·), then one pro
eeds as follows:Let Q be a transition fun
tion su
h that for ea
h x , Q(x , ·) has adensity q(x , y). Then pro
eed as in the dis
rete 
ase but set the�a

eptan
e probability� ρ(x , y) to be
ρ(x , y) = min{p(y)q(y , x)p(x)q(x , y)

, 1}for all (x , y) su
h that p(x)q(x , y) > 0.A parti
ularly useful feature of the above algorithm is that it isenough to know p(·) upto a multipli
ative 
onstant as the�a

eptan
e probability� ρ(·, ·) needs only the ratios p(y)/p(x) or
πi/πj .This assures us that in Bayesian appli
ations it is not ne
essary tohave the normalizing 
onstant of the posterior density available for
omputation of the posterior quantities of interest.



Gibbs SamplingMost of the new problems that Bayesians are asked to solve arehigh-dimensional: e.g. mi
ro-arrays, image pro
essing. Bayesiananalysis of su
h problems involve target (posterior) distributionsthat are high-dimensional multivariate distributions.In image pro
essing, typi
ally one has N × N square grid of pixelswith N = 256 and ea
h pixel has k ≥ 2 possible values. Ea
h
on�guration has (256)2 
omponents and the state spa
e S hask(256)2 
on�gurations. How does one simulate a random
on�guration from a target distribution over su
h a large S?Gibbs sampler is a te
hnique espe
ially suitable for generating anirredu
ible aperiodi
 Markov 
hain that has as its stationarydistribution a target distribution in a high-dimensional spa
e havingsome spe
ial stru
ture.The most interesting aspe
t of this te
hnique: to run this Markov
hain, it su�
es to generate observations from univariatedistributions.



The Gibbs sampler in the 
ontext of a bivariate probabilitydistribution 
an be des
ribed as follows. Let π be a targetprobability distribution of a bivariate random ve
tor (X ,Y ). Forea
h x , let P(x , ·) be the 
onditional probability distribution of Ygiven X = x . Similarly, let Q(y , ·) be the 
onditional probabilitydistribution of X given Y = y . Note that for ea
h x , P(x , ·) is aunivariate distribution, and for ea
h y , Q(y , ·) is also a univariatedistribution. Now generate a bivariate Markov 
hain Zn = (Xn,Yn)as follows:Start with some X0 = x0. Generate an observation Y0 from thedistribution P(x0, ·). Then generate an observation X1 fromQ(Y0, ·). Next generate an observation Y1 from P(X1, ·) and so on.At stage n if Zn = (Xn,Yn) is known, then generate Xn+1 fromQ(Yn, ·) and Yn+1 from P(Xn+1, ·).



If π is a dis
rete distribution 
on
entrated on
{(xi , yj) : 1 ≤ i ≤ K , 1 ≤ j ≤ L} and if πij = π(xi , yj) thenP(xi , yj) = πij/πi · and Q(yj , xi ) = πij/π·j , where
πi · =

∑j πij , π·j =
∑i πij . Thus the transition probability matrixR = ((r(ij),(kℓ))) for the {Zn} 
hain is given byr(ij),(kℓ) = Q(yj , xk)P(xk , yℓ)

=
πkj
π·j πkℓ

πk· .Verify that this 
hain is irredu
ible, aperiodi
, and has π as itsstationary distribution. Thus LLN (16) and (18) hold in this 
ase.Thus for large n, Zn 
an be viewed as a sample from a distributionthat is 
lose to π and one 
an approximate ∑i ,j h(i , j)πij by∑n1=1 h(Xi ,Yi)/n.



Illustration: Consider sampling from( XY )
∼ N2(( 00 ), [ 1 ρ

ρ 1 ]). The 
onditional distribution of Xgiven Y = y and that of Y given X = x areX |Y = y ∼ N(ρy , 1− ρ2) and Y |X = x ∼ N(ρx , 1− ρ2). (23)Using this property, Gibbs sampling pro
eeds as follows: Generate
(Xn,Yn), n = 0, 1, 2, . . ., by starting from an arbitrary value x0 forX0, and repeat the following steps for i = 0, 1, . . . , n.1 Given xi for X , draw a random deviate from N(ρxi , 1− ρ2)and denote it by Yi .2 Given yi for Y , draw a random deviate from N(ρyi , 1− ρ2)and denote it by Xi+1.The theory of Gibbs sampling tells us that if n is large, then (xn, yn)is a random draw from a distribution that is 
lose toN2(( 00 ),

[ 1 ρ
ρ 1 ]).



Multivariate extension: π is a probability distribution of ak-dimensional random ve
tor (X1,X2, . . . ,Xk). Ifu = (u1, u2, . . . , uk) is any k-ve
tor, letu−i = (u1, u2, . . . , ui−1, ui+1, . . . , uk) be the k − 1 dimensionalve
tor resulting by dropping the ith 
omponent ui . Let πi(·|x−i)denote the univariate 
onditional distribution of Xi given thatX−i ≡ (X1,X2,Xi−1,Xi+1, . . . ,Xk) = x−i . Starting with someinitial value for X 0 = (x01, x02, . . . , x0k ) generateX 1 = (X11,X12, . . . ,X1k) sequentially by generating X11 a

ordingto the univariate distribution π1(·|x0−1) and then generating X12a

ording to π2(·|(X11, x03, x04, . . . , x0k ) and so on.The most important feature to re
ognize here is that all theunivariate 
onditional distributions, Xi |X−i = x−i , known as full
onditionals should easily allow sampling from them. This is the
ase in most hierar
hi
al Bayes problems. Thus, the Gibbs sampleris parti
ularly well adapted for Bayesian 
omputations withhierar
hi
al priors.



Rao-Bla
kwellizationThe varian
e redu
tion idea of the famous Rao-Bla
kwell theoremin the presen
e of auxiliary information 
an be used to provideimproved estimators when MCMC pro
edures are adopted.Theorem (Rao-Bla
kwell) Let δ(X1,X2, . . . ,Xn) be an estimatorof θ with �nite varian
e. Suppose that T is su�
ient for θ, and let
δ∗(T ), de�ned by δ∗(t) = E (δ(X1,X2, . . . ,Xn)|T = t), be the
onditional expe
tation of δ(X1,X2, . . . ,Xn) given T = t. ThenE (δ∗(T )− θ)2 ≤ E (δ(X1,X2, . . . ,Xn)− θ)2.The inequality is stri
t unless δ = δ∗, or equivalently, δ is already afun
tion of T .



By the property of iterated 
onditional expe
tation,E (δ∗(T )) = E [E (δ(X1,X2, . . . ,Xn)|T )] = E (δ(X1,X2, . . . ,Xn)).Therefore, to 
ompare the mean squared errors (MSE) of the twoestimators, 
ompare their varian
es only. Now,Var(δ(X1,X2, . . . ,Xn)) = Var [E (δ|T )] + E [Var(δ|T )]

= Var(δ∗) + E [Var(δ|T )] > Var(δ∗),unless Var(δ|T ) = 0, whi
h is the 
ase only if δ is a fun
tion of T .The Rao�Bla
kwell theorem involves two key steps: varian
eredu
tion by 
onditioning and 
onditioning by a su�
ient statisti
.The �rst step is based on the analysis of varian
e formula: For anytwo random variables S and T , be
auseVar(S) = Var(E (S |T )) + E (Var(S |T )),one 
an redu
e the varian
e of a random variable S by taking
onditional expe
tation given some auxiliary information T . This
an be exploited in MCMC.



(Xj ,Yj), j = 1, 2, . . . ,N: a single run of the Gibbs sampleralgorithm with a target distribution of a bivariate random ve
tor
(X ,Y ). Let h(X ) be a fun
tion of the X 
omponent of (X ,Y ) andlet its mean value be µ. Goal is to estimate µ. A �rst estimate isthe sample mean of the h(Xj), j = 1, 2, . . . ,N. From the MCMCtheory, as N →∞, this estimate will 
onverge to µ in probability.The 
omputation of varian
e of this estimator is not easy due tothe (Markovian) dependen
e of the sequen
e {Xj , j = 1, 2, . . . ,N}.Suppose we make n independent runs of Gibbs sampler andgenerate (Xij ,Yij), j = 1, 2, . . . ,N; i = 1, 2, . . . , n. Suppose that Nis su�
iently large so that (XiN ,YiN) 
an be regarded as a samplefrom the limiting target distribution of the Gibbs sampling s
heme.Thus (XiN ,YiN), i = 1, 2, . . . , n form a random sample from thetarget distribution. Consider a se
ond estimate of µ�the samplemean of h(XiN), i = 1, 2, . . . , n.



This estimator ignores part of the MCMC data but has theadvantage that the variables h(XiN), i = 1, 2, . . . , n areindependent and hen
e the varian
e of their mean is of order n−1.Now applying the varian
e redu
tion idea of the Rao-Bla
kwelltheorem by using the auxiliary information YiN , i = 1, 2, . . . , n, one
an improve this estimator as follows:Let k(y) = E (h(X )|Y = y). Then for ea
h i , k(YiN) has a smallervarian
e than h(XiN) and hen
e the following third estimator,1n n∑i=1 k(YiN),has a smaller varian
e than the se
ond one. A 
ru
ial fa
t to keepin mind here is that the exa
t fun
tional form of k(y) be availablefor implementing this improvement.



(Example M2 
ontinued.) X |θ ∼ N(θ, σ2) with known σ2 and
θ ∼ Cau
hy(µ, τ). Simulate θ from the posterior distribution, butsampling dire
tly is di�
ult.Gibbs sampling: Cau
hy is a s
ale mixture of normal densities, withthe s
ale parameter having a Gamma distribution.
π(θ) ∝

(
τ2 + (θ − µ)2)−1

∝
∫ ∞0 (

λ2πτ2 )1/2 exp(− λ2τ2 (θ − µ)2)λ1/2−1 exp(−λ2 ) dλ,so that π(θ) may be 
onsidered the marginal prior density from thejoint prior density of (θ, λ) where
θ|λ ∼ N(µ, τ2/λ) and λ ∼ Gamma(1/2, 1/2).This impli
it hierar
hi
al prior stru
ture implies: π(θ|x) is themarginal density from π(θ, λ|x).



Full 
onditionals of π(θ, λ|x) are standard distributions:
θ|λ, x ∼ N ( τ2

τ2 + λσ2 x +
λσ2

τ2 + λσ2µ,
τ2σ2

τ2 + λσ2) , (24)
λ|θ, x ∼ λ|θ ∼ Exponential(τ2 + (θ − µ)22τ2 )

. (25)Thus, the Gibbs sampler will use (24) and (25) to generate (θ, λ)from π(θ, λ|x).



Example M5. X = number of defe
tives in the daily produ
tion ofa produ
t. (X | Y , θ) ∼ binomial(Y , θ), where Y , a day'sprodu
tion, is Poisson with known mean λ, and θ is the probabilitythat any produ
t is defe
tive. The di�
ulty is that Y is notobservable, and inferen
e has to be made on the basis of X only.Prior: (θ | Y = y) ∼ Beta(α, γ), with known α and γ independentof Y . Bayesian analysis here is not di�
ult be
ause the posteriordistribution of θ|X = x 
an be obtained as follows. First,X |θ ∼ Poisson(λθ). Next, θ ∼ Beta(α, γ). Therefore,
π(θ|X = x) ∝ exp(−λθ)θx+α−1(1− θ)γ−1, 0 < θ < 1. (26)This is not a standard distribution, and hen
e posterior quantities
annot be obtained in 
losed form. Instead of fo
using on θ|Xdire
tly, view it as a marginal 
omponent of (Y , θ | X ). Che
k thatthe full 
onditionals of this are given byY |X = x , θ ∼ x + Poisson(λ(1− θ)), and

θ|X = x ,Y = y ∼ Beta(α + x , γ + y − x)both of whi
h are standard distributions.



Example M5 
ontinued. It is a
tually possible here to samplefrom the posterior distribution using the a

ept-reje
t Monte Carlomethod:Let g(x)/K be the target density, where K is the possibly unknownnormalizing 
onstant of the unnormalized density g . Suppose h(x)is a density that 
an be simulated by a known method and is 
loseto g , and suppose there exists a known 
onstant 
 > 0 su
h thatg(x) < 
h(x) for all x . Then, to simulate from the target density,the following two steps su�
e. Step 1. Generate Y ∼ h andU ∼ U(0, 1);Step 2. A

ept X = Y if U ≤ g(Y )/{
h(Y )}; return to Step 1otherwise.The optimal 
hoi
e for 
 is sup{g(x)/h(x).



In Example M5, from (26),g(θ) = exp(−λθ)θx+α−1(1− θ)γ−1I{0 ≤ θ ≤ 1},so that h(θ) may be 
hosen to be the density of Beta(x + α, γ).Then, with the above-mentioned 
hoi
e for 
 , if θ ∼ Beta(x + α, γ)is generated in Step 1, its `a

eptan
e probability' in Step 2 issimply exp(−λθ).Even though this method works here, let us see how theMetropolis-Hastings algorithm 
an be applied.The required Markov 
hain is generated by taking the transitiondensity q(z , y) = q(y |z) = h(y), independently of z . Then thea

eptan
e probability is
ρ(z , y) = min{g(y)h(z)g(z)h(y)

, 1}
= min {exp (−λ(y − z)) , 1} .



The steps involved in this �independent� M-H algorithm are:Start at t = 0 with a value x0 in the support of the targetdistribution; in this 
ase, 0 < x0 < 1. Given xt , generate the nextvalue in the 
hain as given below.(a) Draw Yt from Beta(x + α, γ).(b) Let x(t+1) =

{ Yt with probability ρtxt otherwise,where ρt = min{exp (−λ(Yt − xt)) , 1}.(
) Set t = t + 1 and go to step (a).Run this 
hain until t = n, a suitably 
hosen large integer. In ourexample, for x = 1, α = 1, γ = 49 and λ = 100, we simulated su
ha Markov 
hain. The resulting frequen
y histogram is shown inFigure below, with the true posterior density super-imposed on it.



Figure: M-H frequen
y histogram and true posterior density.
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Empiri
al Bayes Methods for High DimensionalProblemsThis is be
oming popular again, this time for `high dimensional'problems. Astronomers routinely estimate 
hara
teristi
s of millionsof similar astronomi
al obje
ts � distan
e, radial velo
ity whatever.Consider the data:
(X1 =





X11X12...X1n  ,X2 =





X21X22...X2n  , · · ·Xp =





Xp1Xp2...Xpn ).Xj represents n repeated independent observations on the jthobje
t, j = 1, 2, . . . p. The important point is n is small, 2, 5, or 10,whereas p is large, su
h as a million.Suppose Xj1, . . .Xjn measure µj with variability σ2.Problem: Maximum likelihood 
an give wrong estimates



Take n = 2 and suppose
( Xj1Xj2 ) ∼ N (( µj

µj ) ,

(
σ2 00 σ2 )) , j = 1, 2, . . . p.i.e., we measure µj with 2 independent measurements, ea
h 
omingwith a N(0, σ2) error added to it; we do this for a very largenumber p of obje
ts. What is the MLE of σ2?l(µ1, . . . µp; σ2|x1, . . . xp) = f (x1, . . . xp|µ1, . . . µp; σ2)

=

p∏j=1 2∏i=1 f (xji |µj , σ2)
= (2πσ2)−p exp(− 12σ2 p∑j=1 2∑i=1(xji − µj)2)
= (2πσ2)−p exp(− 12σ2 p∑j=1 [ 2∑i=1(xji − x̄j)2 + 2(x̄j − µj)2]).



µ̂j = x̄j = (xj1 + xj2)/2 and
σ̂2 =

12p p∑j=1 2∑i=1(xji − x̄j)2
=

12p p∑j=1 [(xj1 − xj1 + xj22 )2
+

(xj2 − xj1 + xj22 )2]
=

12p p∑j=1 2(xj1 − xj2)24 =
14p p∑j=1(xj1 − xj2)2.Sin
e Xj1 − Xj2 ∼ N(0, 2σ2), j = 1, 2 . . .,1p p∑j=1(Xj1 − Xj2)2 P−→p→∞

2σ2, so that
σ̂2 =

14p p∑j=1(Xj1 − Xj2)2 P−→p→∞
σ22 , and not σ2.



Good estimates for σ2 do exist, for example,12p p∑j=1(Xj1 − Xj2)2 P−→p→∞
2σ2.What is going wrong here?This is not a small p, large n problem, but a small n, large pproblem. i.e. a high dimensional problem, so needs 
are!As p →∞, there are too many parameters to estimate and thelikelihood fun
tion is unable to see where information lies, so triesto distribute it everywhere.What is the way out? Go Bayesian!



There is a lot of information available on σ2 (note∑pj=1(Xj1 − Xj2)2 ∼ 2σ2χ2p) but very little on individual µj .However, if µj are `similar', there is a lot of information on wherethey 
ome from, be
ause we get to see p samples, p large.Suppose we are interested in µj . How 
an we use the aboveinformation? Model as follows:X̄j |µj , σ2 ∼ N(µj , σ2/2), j = 1, . . . p, independent observations.
σ2 may be assumed known, sin
e a reliable estimate
σ̂2 = 12p ∑pj=1(Xj1 − Xj2)2 is available. Express the informationthat µj are `similar' in the form:
µj , j = 1, . . . p is a random sample (
olle
tion) from N(η, τ2).Where do we get the η and τ2, the prior mean and prior varian
e?Marginally (or in predi
tive sense) X̄j , j = 1, . . . p is a randomsample from N(µ0, τ2 + σ2/2). Use this random sample.



Estimate η by η̂ = ¯̄X = 1p ∑ X̄j and τ2 by
τ̂2 =

( 1p−1∑pj=1(X̄j − ¯̄X )2 − σ2/2)+.Now one 
ould pretend that the prior for (µ1, . . . µp) is N(η̂, τ̂2)and 
ompute the Bayes estimates for µj :E (µj |X1, . . .Xp) = (1− B̂)X̄j + B̂ ¯̄X ,where B̂ = σ2/2
σ2/2+τ̂2 . If instead of 2 observations, ea
h sample has nobservations, repla
e 2 by n. This is 
alled Empiri
al Bayes sin
ethe prior is estimated using data. There is also a fully Bayesian
ounter-part 
alled Hierar
hi
al Bayes.
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Formal Methods for Model Sele
tionWhat is the best model for Gamma-ray burst afterglow?Consider a simpler, abstra
t problem instead.Suppose X having density f (x |θ) is observed, with θ being anunknown element of the parameter spa
e Θ. We are interested in
omparing two models M0 and M1:M0 : X has density f (x |θ) where θ ∈ Θ0;M1 : X has density f (x |θ) where θ ∈ Θ1. (27)Simplify even further, and assume we want to testM0 : θ = θ0 versus M1 : θ 6= θ0, (28)Frequentist: A (
lassi
al) signi�
an
e test is derived. It is based ona test statisti
 T (X ), large values of whi
h are deemed to provideeviden
e against the null hypothesis, M0. If data X = x isobserved, with 
orresponding t = T (x), the P-value is
α = Pθ0 (T (X ) ≥ T (x)) .



Example 6. Consider a random sample X1, . . . ,Xn from N(θ, σ2),where σ2 is known. Then X̄ is su�
ient for θ and it has theN(θ, σ2/n) distribution. Noting thatT = T (X̄ ) = |√n (X̄ − θ0) /σ| is a natural test statisti
 to test(28), one obtains the usual P-value as α = 2[1− Φ(t)], wheret = |√n (x̄ − θ0) /σ| and Φ is the standard normal 
umulativedistribution fun
tion.What is a P-value and what does it say? P-value is the probabilityunder a (simple) null hypothesis of obtaining a value of a teststatisti
 that is at least as extreme as that observed in the sampledata.To 
ompute a P-value we take the observed value of the teststatisti
 to the referen
e distribution and 
he
k if it is likely orunlikely under M0.



χ2 Goodness-of-�t testExample 7. Rutherford and Geiger (1910) gave the followingobserved numbers of intervals of 1/8 minute when 0, 1, . . .
α-parti
les are eje
ted by a spe
imen. Che
k if Poisson �ts well.Number 0 1 2 3 4 5Obs. 57 203 383 525 532 408Exp. 54 211 407 525 508 393Number 6 7 8 9 10 11 12 or moreObs. 273 139 45 27 10 4 2Exp. 254 140 68 29 11 4 1Test statisti
: T =

k∑j=1 (Oi − Ei)2Ei ∼ χ2k−2 approximately for large n,where k is the number of 
ells, Oi is the observed and Ei is theexpe
ted 
ount (estimated) for the ith 
ell.



Estimated Poisson intensity rate = (total number of parti
leseje
ted)/(total number of intervals) = 100097/2608 =3.87.k = 13.P-value = P(T ≥ 14.03) ≈ 0.21 (under χ211).Likelihood Ratio CriterionStandard likelihood ratio 
riterion for 
omparing M0 and M1 is
λn =

f (x|θ̂0)f (x|θ̂) =
maxθ∈Θ0 f (x|θ)maxθ∈Θ0∪Θ1 f (x|θ) . (29)0 < λn ≤ 1, and large values of λn provide eviden
e for M0.Reje
t M0 for small values.Use λn (or a fun
tion of λn) as a test statisti
 if its distributionunder M0 
an be derived. Otherwise, use the large sample result:

−2 log(λn) L−→n→∞
χ2p1−p0 ,under M0 where p0 and p1 are dimensions of Θ0 and Θ0 ∪Θ1.
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Bayesian Model Sele
tionHow does the Bayesian approa
h work?X ∼ f (x |θ) and we want to testM0 : θ ∈ Θ0 versus M1 : θ ∈ Θ1. (30)If Θ0 and Θ1 are of the same dimension (eg: M0 : θ ≤ 0 andM1 : θ > 0), 
hoose a prior density that assigns positive priorprobability to Θ0 and Θ1. Then 
al
ulate the posterior probabilitiesP{Θ0|x}, P{Θ1|x} as well as the posterior odds ratio, namely,P{Θ0|x}/P{Θ1|x}.Find a threshold like 1/9 or 1/19, et
. to de
ide what 
onstituteseviden
e against H0.Alternatively, let π0 and 1− π0 be the prior probabilities of Θ0 and
Θ1. Let gi (θ) be the prior p.d.f. of θ under Θi (or Mi), so that

∫

Θi gi (θ)dθ = 1.



The prior in the previous approa
h is nothing but
π(θ) = π0g0(θ)I{θ ∈ Θ0}+ (1− π0)g1(θ)I{θ ∈ Θ1}.Need not require any longer that Θ0 and Θ1 are of the samedimension. Sharp null hypotheses are also 
overed. Pro
eed asbefore and report posterior probabilities or posterior odds. To
ompute these posterior quantities, note that the marginal densityof X under the prior π 
an be expressed asmπ(x) =

∫

Θ
f (x |θ)π(θ) dθ

= π0 ∫
Θ0 f (x |θ)g0(θ) dθ + (1− π0)∫

Θ1 f (x |θ)g1(θ) dθand hen
e the posterior density of θ given the data X = x as
π(θ|x) =

f (x |θ)π(θ)mπ(x) =

{
π0f (x |θ)g0(θ)/mπ(x) if θ ∈ Θ0;

(1− π0)f (x |θ)g1(θ)/mπ(x) if θ ∈ Θ1.



It follows then thatPπ(M0|x) = Pπ(Θ0|x) =
π0mπ(x) ∫Θ0 f (x |θ)g0(θ) dθ

=
π0 ∫Θ0 f (x |θ)g0(θ) dθ

π0 ∫Θ0 f (x |θ)g0(θ) dθ + (1− π0) ∫Θ1 f (x |θ)g1(θ) dθ
;Pπ(M1|x) = Pπ(Θ1|x) =

(1− π0)mπ(x) ∫

Θ1 f (x |θ)g1(θ) dθ

=
(1− π0) ∫Θ1 f (x |θ)g1(θ) dθ

π0 ∫Θ0 f (x |θ)g0(θ) dθ + (1− π0) ∫Θ1 f (x |θ)g1(θ) dθ
.One may also report the Bayes fa
tor, whi
h does not depend on

π0. The Bayes fa
tor of M0 relative to M1 is de�ned asBF01 =
P(Θ0|x)P(Θ1|x)

/P(Θ0)P(Θ1) =

∫
Θ0 f (x |θ)g0(θ) dθ
∫
Θ1 f (x |θ)g1(θ) dθ

. (31)



Note:
• BF10 = 1/BF01.
• Posterior odds ratio of M0 relative to M1:P(Θ0|x)P(Θ1|x)

=

(
π01− π0)BF01.

• Posterior odds ratio of M0 relative to M1 = BF01 if π0 = 12 .
• The smaller the value of BF01, the stronger the eviden
eagainst M0.Testing as a model sele
tion problem using Bayes fa
tor illustratedbelow: Je�reys test.



Je�reys Test for Normal Mean; σ2 UnknownX1,X2, . . . ,Xn a random sample from N(µ, σ2). We want to testM0 : µ = µ0 versusM1 : µ 6= µ0where µ0 is some spe
i�ed number.Parameter σ2 is 
ommon in the two models 
orresponding to M0and M1 and µ o

urs only in M1. Take the prior g0(σ) = 1/σ for σunder M0. Under M1, take the same prior for σ and add a
onditional prior for µ given σ, namelyg1(µ|σ) =
1
σ
g2(µ

σ
).where g2(·) is a p.d.f. Je�reys suggested we should take g2 to beCau
hy, so g0(σ) =

1
σ

under M0g1(µ, σ) =
1
σ
g1(µ|σ) =

1
σ

1
σπ(1 + µ2/σ2) under M1.One may now �nd the Bayes fa
tor BF01 using (31).



Example 8. Einstein's theory of gravitation predi
ts the amount ofde�e
tion of light de�e
ted by gravitation. Eddington's expeditionin 1919 (and other groups in 1922 and 1929) provided 4observations: x1 = 1.98, x2 = 1.61, x3 = 1.18, x4 = 2.24 (all inse
onds as measures of angular de�e
tion). Suppose they arenormally distributed around their predi
ted value µ. ThenX1, · · · ,X4 are independent and identi
ally distributed as N(µ, σ2).Einstein's predi
tion is µ = 1.75. Test M0 : µ = 1.75 versusM1 : µ 6= 1.75, where σ2 is unknown.Use the 
onventional priors of Je�reys to 
al
ulate the Bayes fa
tor.BF01 = 2.98.The 
al
ulations with the given data lend some support toEinstein's predi
tion. However, the eviden
e in the data isn't verystrong.



BICWhen we 
ompare two models M0 : θ ∈ Θ0 and M1 : θ ∈ Θ1, whatdoes the Bayes fa
torBF01 =

∫
Θ0 f (x |θ)g0(θ) dθ
∫
Θ1 f (x |θ)g1(θ) dθ

=
m0(x)m1(x)measure?m0(x) measures how well M0 �ts the data x whereas m1(x)measures how well M1 �ts the same data, so BF01 is the relativestrength of the two models in the predi
tive sense. This 
an bedi�
ult to 
ompute for 
ompli
ated models, so any goodapproximation is wel
ome.Approximate marginal density m(x) of X for large sample size n:m(x) =

∫
π(θ)f (x |θ) dθ =?



Lapla
e's Methodm(x) =

∫
π(θ)f (x |θ) dθ =

∫
π(θ)

n∏i=1 f (xi |θ) dθ

=

∫
π(θ) exp( n∑i=1 log f (xi |θ)) dθ =

∫
π(θ) exp(nh(θ)) dθ.where h(θ) = 1n ∑ni=1 log f (xi |θ).Consider any integral of the formI =

∫ ∞

−∞
q(θ)enh(θ) dθwhere q and h are smooth fun
tions of θ with h having a uniquemaximum at θ̂.If h has a unique sharp maximum at θ̂, then most 
ontribution tothe integral I 
omes from the integral over a small neighborhood

(θ̂ − δ, θ̂ + δ) of θ̂.



Study the behavior of I as n →∞. As n →∞, we haveI ∼ I1 =

∫ θ̂+δ

θ̂−δ
q(θ)enh(θ) dθ.Lapla
e's method involves Taylor series expansion of q and habout θ̂:I ∼ ∫ θ̂+δ

θ̂−δ

[q(θ̂) + (θ − θ̂)q′(θ̂) +
12(θ − θ̂)2q′′(θ̂) + · · ·

]

× exp [nh(θ̂) + nh′(θ̂)(θ − θ̂) +
n2h′′(θ̂)(θ − θ̂)2 + · · ·

]

∼ enh(θ̂)q(θ̂)

∫ θ̂+δ

θ̂−δ

[1 + (θ − θ̂)q′(θ̂)/q(θ̂) +
12(θ − θ̂)2q′′(θ̂)/q(θ̂)

]

× exp [n2h′′(θ̂)(θ − θ̂)2] dθ.Assume 
 = −h′′(θ̂) > 0 and use a 
hange of variablet =
√n
(θ − θ̂):



I ∼ enh(θ̂)q(θ̂)
1√n


×
∫ δ

√n

−δ

√n
 [1 +
t√n
 q′(θ̂)/q(θ̂) +

t22n
 q′′(θ̂)/q(θ̂)

] e−t2/2 dt
∼ enh(θ̂)

√2π√n
 q(θ̂)

[1 +
q′′(θ̂)2n
q(θ̂)

]

= enh(θ̂)

√2π√n
 q(θ̂)
[1 + O(n−1)] . (32)Apply (32) to m(x) =
∫

π(θ)f (x |θ) dθ =
∫

π(θ) exp(nh(θ)) dθ,with q = π and ignore terms that stay bounded.log(m(x) ≈ nh(θ̂)− 12 log n = log(f (x |θ̂))− 12 log n.



What Happens When θ is p > 1 Dimensional?Simply repla
e (32) by its p dimensional 
ounter part:I = enh(θ̂)(2π)p/2n−p/2 det(∆h(θ̂))−1/2q(θ̂)(1 + O(n−1))where ∆h(θ) denotes the Hessian of −h, i.e.,
∆h(θ) =

(
− ∂2

∂θi∂θj h(θ)

)p×p .Now apply this tom(x) =
∫
· · ·
∫

π(θ)f (x |θ) dθ =
∫
· · ·
∫

π(θ) exp(nh(θ)) dθ, withq = π and ignore terms that stay bounded. Thenlog(m(x) ≈ nh(θ̂)− p2 log n = log(f (x |θ̂))− p2 log n.



S
hwarz (1978) proposed a 
riterion, known as the BIC, based on(32) ignoring the terms that stay bounded as the sample sizen →∞ (and general dimension p for θ):BIC = log f (x |θ̂)− (p/2) log nThis serves as an approximation to the logarithm of the integratedlikelihood of the model and is free from the 
hoi
e of prior.2 logBF01 is a 
ommonly used evidential measure to 
ompare thesupport provided by the data x for M0 relative to M1. Under theabove approximation we have,2 log(BF01) ≈ 2 log( f (x|θ̂0)f (x|θ̂1))− (p0 − p1) log n. (33)This is the approximate Bayes fa
tor based on the Bayesianinformation 
riterion (BIC) due to S
hwarz (1978). The term
(p0 − p1) log n 
an be 
onsidered a penalty for using a more
omplex model.



AICRe
all the likelihood ratio 
riterion: λn = f (x|θ̂0)f (x|θ̂)P(M0 is reje
ted|M0) = P(λn < 
) ≈ P(χ2p1−p0 > −2 log(
)) > 0,so, from a frequentist point of view, a 
riterion based solely on thelikelihood ratio does not 
onverge to a sure answer under M0.Akaike (1983) suggested a penalized likelihood 
riterion:2 log( f (x|θ̂0)f (x|θ̂1))− 2(p0 − p1) (34)whi
h is based on the Akaike information 
riterion (AIC), namely,AIC = 2 log f (x|θ̂)− 2pfor a model f (x|θ). The penalty for using a 
omplex model is notas drasti
 as that in BIC.
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Model Sele
tion or Model Averaging?Example 9. Velo
ities (km/se
ond) of 82 galaxies in sixwell-separated 
oni
 se
tions of the Corona Borealis region. Howmany 
lusters?
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Consider mixture of normals:f (x |θ) =
n∏i=1 f (xi |θ)

=
n∏i=1 k∑j=1 pjφ(xi |µj , σ2j ) ,where k is the number of mixture 
omponents, pj is the weightgiven to the jth 
omponent, N(µj , σ2j ).Models to 
onsider:Mk : X has density k∑j=1 pjφ(xi |µj , σ2j ), k = 1, 2 . . .i.e., Mk is a k 
omponent normal mixture.



Bayesian model sele
tion pro
edure 
omputesm(x |Mk) =
∫

π(θk)f (x |θk) dθk , for ea
h k of interest and pi
ksthe one whi
h gives the largest value.Example 9 
ontd. Chib (1995), JASA:k σ2j log(m(x |Mk))2 σ2j = σ2 -240.4643 σ2j = σ2 -228.6203 σ2j unrestri
ted -224.1383 
omponent normal mixture model with unequal varian
es seemsbest.



• From the Bayesian point of view, a natural approa
h to modelun
ertainty is to in
lude all models, Mk , under 
onsiderationfor future de
isions.
• i.e., Bypass the model-
hoi
e step entirely.
• Unsuitable for s
ienti�
 inferen
e where sele
tion of a model isa must.
• Suitable for predi
tion purposes, sin
e underestimation ofun
ertainty resulting from 
hoosing model Mk̂ is eliminated.



We have Θ = ∪kΘk ,f (y |θ) = fk(y |θk) if θ ∈ Θk and
π(θ) = pkgk(θk) if θ ∈ Θk ,where pk = Pπ(Mk) is the prior probability of Mk and gk integratesto 1 over Θk . Therefore, given the sample x = (x1, . . . xn),

π(θ|x) =
f (x |θ)π(θ)m(x)

=
∑k pkm(x)

fk(x |θk)gk(θk)IΘk (θk)
=

∑k P(Mk |x)gk(θk |x)IΘk (θk).



Predi
tive density m(y |x) given the sample x = (x1, . . . xn) is whatis needed. This is given bym(y |x) =

∫

Θ
f (y |θ)π(θ|x) dθ

=
∑k P(Mk |x)

∫

Θk fk(y |θk)gk(θk |x) dθk
=

∑k P(Mk |x)mk(y |x),whi
h is 
learly obtained by averaging over all models.



Minimum Des
ription LengthModel �tting is like des
ribing the data in a 
ompa
t form. Amodel is better if it 
an provide a more 
ompa
t des
ription, or if it
an 
ompress the data more, or if it 
an be transmitted with fewerbits. Given a set of models to des
ribe a data set, the best model isthe one whi
h provides the shortest des
ription length.In general one needs log2(n) bits to transmit n, but patterns 
anredu
e the des
ription length.100 · · · 0: 1 followed by a million 0's1010 · · · 10: pair 10 repeated a million times



If data x is known to arise from a probability density p, then theoptimal 
ode length (in an average sense) is given by − log p(x).The optimal 
ode length of − log p(x) is valid only in the dis
rete
ase. What happens in the 
ontinuous 
ase? Dis
retize x anddenote it by [x ] = [x ]δ where δ denotes the pre
ision. This meanswe 
onsiderP([x ]− δ/2 ≤ X ≤ [x ] + δ/2) =

∫ [x]+δ/2
[x]−δ/2 p(u) du ≈ δp(x)instead of p(x) itself as far as 
oding of x is 
onsidered when x isone-dimensional. In the r -dimensional 
ase, repla
e the densityp(x) by the probability of the r -dimensional 
ube of side δ
ontaining x, namely p([x])δr ≈ p(x)δr , so that the optimal 
odelength 
hanges to − log p(x)− r log δ.



MDL for Estimation or Model FittingConsider data x ≡ xn = (x1, x2, . . . , xn), and suppose
F = {f (xn|θ) : θ ∈ Θ}is the 
olle
tion of models of interest. Further, let π(θ) be a priordensity for θ. Given a value of θ (or a model), the optimal 
odelength for des
ribing xn is − log f (xn|θ), but sin
e θ is unknown, itsdes
ription requires a further − log π(θ) bits on average. Thereforethe optimal 
ode length is obtained upon minimizingDL(θ) = − log π(θ)− log f (xn|θ), (35)so that MDL amounts to seeking that model whi
h minimizes thesum of(i) the length, in bits, of the des
ription of the model, and(ii) the length, in bits, of data when en
oded with the help of themodel.



The posterior density of θ given the data xn is
π(θ|xn) =

f (xn|θ)π(θ)m(xn) , (36)where m(y) is the marginal or predi
tive density. MinimizingDL(θ) = − log π(θ)− log f (xn|θ) = − log{f (xn|θ)π(θ)}over θ is equivalent to maximizing π(θ|xn). Thus MDL forestimation or model �tting is equivalent to �nding the highestposterior density (HPD) estimate of θ.Consider the 
ase of F having model parameters of di�erentdimensions. Consider the 
ontinuous 
ase and dis
retization.Denote k-dimensional θ by θk = (θ1, θ2, . . . , θk). Then



DL(θk)
= − log{π([θk ]δπ)δkπ} − log{f ([xn]δf |[θk ]δπ)δnf }
= − log π([θk ]δπ)− k log δπ − log f ([xn]δf |[θk ]δπ)− n log δf
≈ − log π(θk)− k log δπ − logf (xn|θk)− n log δf .Note that the term −n log δf is 
ommon a
ross all models, so it
an be ignored. However, the term −k log δπ indi
ating thedimension of θ in the model varies and is in�uential. A

ording toRissanen, δπ = 1/√n is optimal, in whi
h 
aseDL(θk) ≈ −logf (xn|θk)− log π(θk) +

k2 log n + 
onstant . (37)
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