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1 What is Statistical Inference?

It is an inverse problem as in ‘Toy Example’:

Example 1 (Toy). Suppose a million candidate stars are examined for the
presence of planetary systems associated with them. If 272 ‘successes’ are
noticed, how likely that the success rate is 1%, 0.1%, 0.01%, - - - for the entire
universe?

Probability models for observed data involve direct probabilities:

Example 2. An astronomical study involved 100 galaxies of which 20 are
Seyfert galaxies and the rest are starburst galaxies. To illustrate generaliza-
tion of certain conclusions, say 10 of these 100 galaxies are randomly drawn.
How many galaxies drawn will be Seyfert galaxies?

This is exactly like an artificial problem involving an urn having 100 marbles
of which 20 are red and the rest blue. 10 marbles are drawn at random with
replacement (repeatedly, one by one, after replacing the one previously drawn
and mixing the marbles well). How many marbles drawn will be red?

Data and Models

X = number of Seyfert galaxies (red marbles) in the sample (out of sample
size n = 10)

P(X = k|0) = <Z> 01— 0)" R k=01,...n (1)

In (1) @ is the proportion of Seyfert galaxies (red marbles) in the urn, which
is also the probability of drawing a Seyfert galaxy at each draw. In Example

2,6 = 75 = 0.2 and n = 10. So,

P(X =0/ =0.2) =038 P(X =10 =0.2) =10 x 0.2 x 0.8°, and so on.

In practice, as in ‘Toy Example’; 6 is unknown and inference about it is the
question to solve.

In the Seyfert/starburst galaxy example, if 6 is not known and 3 galaxies
out of 10 turned out to be Seyfert, one could ask:

how likely is § = 0.1, or 0.2 or 0.3 or ...7



Thus inference about 6 is an inverse problem:
Causes (parameters) «— Effects (observations)
How does this inversion work?

The direct probability model P(X = k|f) provides a likelihood function for
the unknown parameter § when data X = x is observed:

[(0lx) = f(z|0) (= P(X = z|f#) when X is a discrete random variable) as
function of 8 for given x.

Interpretation: f(z|f) says how likely = is under different 6 or the model
P(.]10), so if x is observed, then P(X = z|f) = f(xz]0) = [(0|z) should be able
to indicate what the likelihood of different 6 values or P(.|0) are for that .

As a function of x for fixed § P(X = z|) is a probability mass function or
density, but as a function of 8 for fixed z, it has no such meaning, but just
a measure of likelihood.

After an experiment is conducted and seeing data x, the only entity available
to convey the information about @ obtained from the experiment is [(6|z).

For the Urn Example we have [(8|X = 3) o< 63(1 — 0)7:
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Maximum Likelihood Estimation (MLE): If [(0|x) measures the likeli-
hood of different # (or the corresponding models P(.|#)), just find that 6 = 6
which maximizes the likelihood.



For model (1)
0 = 0(x) = x/n = sample proportion of successes .

This is only an estimate. How good is it? What is the possible error in
estimation?

Likelihood function I(f|z) has nothing to say about these.

2 Frequentist Statistics

Consider repeating this experiment again and again. Then one can look at
all possible sample data. i.e. all possible x values. Utilize long-run average
behaviour of the MLE. i.e. treat 6 as a random quantity by replacing = by
X in é(aj) i.e. look at X/n where X can take all possible values, 0, 1, ...n.

X ~ Binomial(n,#) with the probability model (1). Noting that the vari-
ance of such an X is nf(1 — 0), one obtains the variance of X/n to be
0(1 —0)/n, which can be estimated by #(1 —€)/n. A measure of estimation

error of 0 is the estimated standard deviation of X/n, namely, /6(1 — 0)/n.
For further development we need large n, so that we can apply the Law
of Large Numbers and the Central Limit Theorem to X/n. Then, the es-
timator will be close to the true 6 probabilistically and also, it is approxi-
mately distributed like a Gaussian random variable with mean 6 and variance

(1 —6)/n.
Confidence Statements

Specifically, for large n, approximately

=0 N,
0(1—0)/n

Aé_aA ~ N(0,1). (2)
01— 6)/n

From (2), an approximate 95% confidence interval for  (when n is large) is

0 +2/0(1—8)/n.
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What Does This Mean?

Simply, if we sample again and again, in about 19 cases out of 20 this random
interval

( X) = 2/6(X) (1 — (X)) /n, 6(X) + 20/0(X)(1 — b(X ))/n>

will contain the true unknown value of 6.

Fine, but what can we say about the one interval that we can construct for
the given sample or data z?

Nothing; either  is inside (0.3 — 2,/0.3 x 0.7/10,0.3 + 2,/0.3 x 0.7/10) or

it is outside.

Can we say 0.3 — 2,/0.3 x 0.7/10 < 0 < 0.3 + 2,/0.3 x 0.7/10 with 95%

chance?

Not in this approach. If § is treated as fixed unknown constant, conditioning
on the given data X = z is meaningless.

3 Conditioning on Data

e What other approach is possible, then?
e How does one condition on data?

e How does one talk about probability of a model or a hypothesis?

Example 3.(not from physics but medicine) Consider a blood test for a
certain disease; result is positive (x = 1) or negative (x = 0). Suppose 64
denotes disease is present, 05 disease not present.

Test is not confirmatory. Instead the probability distribution of X for dif-
ferent 6 is:

z=0]z=1 What does it say?
01 0.2 0.8 Test is +ve 80% of time if ‘disease present’
0o | 0.7 0.3 | Test is —ve 70% of time if ‘disease not present’

If for a particular patient the test result comes out to be ‘positive’, what
should the doctor conclude?



What is the Question?

What is to be answered is ‘what are the chances that the disease is present
given that the test is positive?’ i.e., P(6 = 01|X = 1).

What we have is P(X = 1|6 = 0;) and P(X = 1]0 = 69).

We have the ‘wrong’ conditional probabilities. They need to be ‘reversed’.
But how?

4 The Bayesian Recipe

Recall Bayes Theorem: If A and B are two events,

P(A and B)

P(AIB) = =515

assuming P(B) > 0. Therefore, P(A and B) = P(A|B)P(B), and by sym-
metry P(A and B) = P(B|A)P(A). Consequently, if P(B|A) is given and
P(A|B) is desired, note

Aand B) P(BJ|A)P(A)

P(
PAIB) =="5m) = pB)

Rule of total probability says,
P(B)=P(Band Q) = P(Band A)+ P(B and A°)
= P(BJA)P(A) + P(B|A°)(1 — P(A)), so

P(B|A)P(A)

(BJA)P(A) + P(B|A°)(1 — P(A)) (3)

P(AIB) =

Bayes Theorem allows one to invert a certain conditional probability to get
a certain other conditional probability. How does this help us?

In our example we want P(6 = 60;|X = 1). From (3),

PO=6,]X =1)
P(X=1]0=0)P0 =0,

T P(X=1]0)PlO=01)+P(X =1]0,)P(0 = 05) (4)




So, all we need is P(f = 61), which is simply the probability that a randomly
chosen person has this disease, or just the ‘prevalence’ of this disease in the
concerned population. The good doctor most likely has this information from
his experience in the field. But this is not part of the experimental data.
This is pre-experimental information or prior information. If we have this,
and are willing to incorporate it in the analysis, we get the post-experimental
information or posterior information in the form of P(0|X = z).

In our example, if we take P(6 = 61) = 0.05 or 5%, we get

0.8 x 0.05 0.04
PH=60,|X=1)= — —0.123
( a ) 0.8 x 0.05+ 0.3 x 0.95 0.325

which is only 12.3% and P( =60y | X = 1) = 0.877 or 87.7%.

Formula (4) which shows how to ‘invert’ the given conditional probabilities,
P(X = x| 0) into the conditional probabilities of interest, P(6 | X = x)is an
instance of the Bayes Theorem, and hence the Theory of Inverse Probability
(usage at the time of Bayes and Laplace, late eighteenth century and even
by Jeffreys), is known these days as Bayesian inference.

Ingredients of Bayesian inference:

likelihood function, [(f|x); € can be a parameter vector

prior probability, ()

Combining the two, one gets the posterior probability density or mass func-
tion

<TO)O)z) if 8 is discrete;
SO0 ! ’
(0 | x) = L ()1(0)2) ’

W if 0 is continuous.

5 Inference for Binomial proportion

Example 2 contd. Suppose we have no special information available on 6.
Then assume 6 is uniformly distributed on the interval (0,1). i.e., the prior
density is 7(f) =1, 0<6<1.



This is a choice of non-informative or wvague or reference prior. Often,
Bayesian inference from such a prior coincides with classical inference.

In the Example then the posterior density of 6 given z is

m(0)I(6]x)
[ m(w)l(u|x) du

!
A D oy e g<p<t.
zl(n — x)!

m(0]x)

As a function of 6, this is the same as the likelihood function [(0|z)
0*(1 — 0)"*, and so maximizing the posterior probability density will give
the same estimate as the maximum likelihood estimate!

Influence of the Prior

If we had some knowledge about # which can be summarized in the form of
a Beta prior distribution with parameters o and -, the posterior will also
be Beta with parameters x + « and n — x 4+ . Such priors which result
in posteriors from the same ‘family’ are called ‘natural conjugate priors’.
Robustness?

A\
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Objective Bayesian Analysis:

Invariant priors: Jeffreys
Reference priors: Bernardo, Jeffreys

Maximum entropy priors: Jaynes



In Example 2, what 7(f|z) says is that the uncertainty in 6 can now be
described in terms of an actual probability distribution concentrated around
the maximum likelihood estimate § = x/n. However, the interpretation of
0 as an estimate of 6 is quite different. It is the most probable value of
the unknown parameter 6 conditional on the sample data x; it is called the
‘maximum a posteriori estimate (MAP)’ or the ‘highest posterior density
estimate (HPD)’.

There is no need to mimic the MLE anymore. We have a genuine proba-
bility distribution, namely, the posterior distribution to quantify our post-
experimental knowledge about #. Indeed the usual Bayes estimate is the
mean of the posterior distribution which minimizes the posterior dispersion:

E[(6 — 65)°|2] = min E[(6 — a)’|2],
when 0 = E(0]z).

If we choose fp as the estimate of 0, we get a natural measure of variability
of this estimate in the form of the posterior variance: E[(0 — E(6|x))?|z].
Therefore the posterior standard deviation is a natural measure of estimation
error. i.e., our estimate is fp + /E[(6 — E(6]x))2|x].

In fact, we can say much more. For any interval around 6 we can compute
the (posterior) probability of it containing the true parameter 6. In other
words, a statement such as

P(Op — k1 <0 <0p+ky|z) =095
is perfectly meaningful.
All these inferences are conditional on the given data.

In Example 2, if the prior is a Beta distribution with parameters « and -,
then 6|z will have a Beta(z+«,n—x++) distribution, so the Bayes estimate
of 6 will be

A (z+ ) n x a+y a

b = = z .
m+a+vy) n+at+yn n+at+ya+ry

This is a convex combination of sample mean and prior mean, with the
weights depending upon the sample size and the strength of the prior infor-
mation as measured by the values of a and ~.



Bayesian inference relies on the conditional probability language to revise
one’s knowledge. In the above example, prior to the collection of sample
data one had some (vague, perhaps) information on 6. Then came the sample
data. Combining the model density of this data with the prior density one
gets the posterior density, the conditional density of 6 given the data. From
now on until further data is available, this posterior distribution of 6 is the
only relevant information as far as 6 is concerned.

6 Inference With Normals/Gaussians

Gaussian PDF:

1 (z—p)?

vV 2ro?

e 202 over [—00, 0] (6)
Common abbreviated notation: X ~ N(u,o?)

flalp,o®) =

Parameters:
po= B = (0= [oflno’)de

7= BX -0 = (X =) = [0 falo®) do

Inference About a Normal Mean

Example 4. Fit a normal/Gaussian model to the ‘globular cluster luminos-
ity functions’ data. The set-up is as follows.

Our data consist of n measurements, X; = pu + ¢;.
Suppose the noise contributions are independent, and ¢; ~ N(0,02). Denot-
ing by x, the random sample (z1,...x,),

f(x|,u,02) = Hf(l‘i|u,02)

- H . e~ 302 (@i—1)°
V2702
= (27T02)_n/26_2(%2 iy (@i—p)?

(27‘(0’2)_71/26_20% [Si (@i—2)?+n(@—p)?]



Note (X, s* = > | (X;—X)?/(n—1)) is sufficient for the parameters (u, o).
This is a very substantial data compression.

Inference About a Normal Mean, 0> known
(Not useful, but easy to understand.)

7oz (u—12)?

) oc f(xlp,02) oce” ,

so that X is sufficient. Also, X|u ~ N(p,0?/n). If an informative prior,
p ~ N (g, 72) is chosen for p,

m(plx) o I(plx)m(u)

2 2
%["(“62) 1 lemso) }
x e
T2+o'2/n ( 7'20'2/n ) nx 2
x e o +ot/ )
. A S9N,
ie., plx ~ N(@,d%):
. 7'202/71 u0+nj)
H 2 +02/n' 12 o2

T2 a?/n

T2 + 02/nx T2 + 02/nu0'

[t is the Bayes estimate of y, which is just a weighted average of sample mean
Z and prior mean .

62 is the posterior variance of y and

52— 202 /n _0_2 T2
T 24020 nTi+0%/n’

Therefore [i +§ is our estimate for p and 4 + 2§ is a 95% HPD (Bayesian)
credible interval for pu.

2

What happens as 7° — oo, or as the prior becomes more and more flat?

/l—>.i‘, 5_>i

Vn

i.e., Jeffreys’ prior m(u) = C reproduces frequentist inference.
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Inference About a Normal Mean, ¢? unknown

Our observations X1, ... X,, is a random sample from a Gaussian population
with both mean p and variance o unknown.

We are only interested in pu.

How do we get rid of the nuisance parameter o2?

Bayesian inference uses posterior distribution which is a probability distri-
bution, so ¢ should be integrated out from the joint posterior distribution
of u and o2.

U, 02]x) = (2m0%) /26 02 [Lim @m0 nlu—2)?]
Start with 7(u,0?) and get
(1, 0% ) ox (11, 7211, 02 )

and then get
[o.¢]
wluix) = [ wlp,o%x) do®
0

Use Jeffreys’ prior 7(u,0?) o« 1/0%: Flat prior for g which is a location
or translation parameter, and an independent flat prior for log(o) which is
again a location parameter, being the log of a scale parameter.

1
W(M? 0—2‘X) x ﬁl(/ﬁ? 0—2‘X)
m(ulx) x

/oo (0-2)*(71Jr1)/2€72(%2 [E?:1(xi*f)2+n(uff)2] d02
0

x [(n—1)s*+n(u—z)?] /2

L L np-—2)? e
n—1 52

o density of Students t,,_1.

Vn(p — )

S

< U< T+t 1(0.975)—= | data) = 95%
n

NG

| data ~ t,_1

P(Z — t,_1(0.975)

S

12



i.e., the Jeffreys’ translation-scale invariant prior reproduces frequentist in-
ference.

What if there are some constraints on p such as —A < u < B, for example,
w > 0?7 We will get a truncated t,_; instead, but the procedure will go
through with minimal change.

Example 4 contd. (GCL Data) n = 360, £ = 14.46, s = 1.19.

V/360(11 — 14.46)
1.19

| data ~ t359

p| data ~ N (14.46,0.063%) approximately.

pitmuix)

Estimate for mean GCL is 14.46 £ 0.063 and 95% HPD credible interval is
(14.33,14.59).

Comparing two Normal Means

Example 5. Check whether the mean distance indicators in the two popu-
lations of LMC datasets are different. Model as follows:

X1,...Xp, is a random sample from N(uy,o%).
Y1,...Y,, is a random sample from N (uz,03).
Samples are independent.

Unknown parameters: (p1, ji2,0%,03)

Quantity of interest: n = 1 — po

Nuisance parameters: U% and U%

13



Case 1. 07 = 05. Then sufficient statistic for (u1, po,0?) is

(X,Y, ' = s (Z?:ll(Xz' - X2+ (Y - 37)2»

X|H17 M2, 02 ~ N(,Ufla 02/”1): Y‘M17 M2, 02 ~ N(H27 02/”2)7 (n1+n2_2)82|ul7 M2, 02 ~
02X7211+n2—2'

These three are independently distributed.

X = Yl|p1,p2,0% ~ N0, 0 (5= + 7)), 1= pn — pio
Use Jeffreys’ location-scale invariant prior m(u1, i, 0?) oc 1/0?

1 1
77|U27X7y ~ N(j -, 02(_ + _))7 and
ni no
w(n,0%[x,y) o< w(n]o?, x, y)w(0?|s), (7)

Integrate out o2 from (7) as in the previous example to get

n—(x—-y
% ’X,yNtnl+n272.
SV T as

95% HPD credible interval for n = puy — ug is

1 1
T— Y+t 4ny—2(0.975)sy ) — + —,
ni no

same as frequentist ¢-interval.

Example 5 contd. We have £ = 18.539, y = 18.473, n1 = 13, no = 12 and

5% = 0.0085. ) = T — § = 0.066, 5,/ - + 7= = 0.037, t3(0.975) = 2.069.
95% HPD credible interval for n = pu; — pa: (0.066 — 2.069 x 0.037,0.066 +
2.069 x 0.037) = (—0.011,0.142).

14
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piletaldata)

Case 2. U% and U% are not known to be equal.

From the one-sample normal example, note that
(X,s% = 153" (X; — X)?) sufficient for (u1,07), and

ni—1

(Y,s3 = ﬁ > (Y — Y)?) sufficient for (p2,03).

Making inference on 7 = p3 — s when 0% and o3 are not assumed to be
equal is called the Behrens-Fisher problem for which the frequentist solution

is not very straight forward, but the Bayes solution is.

% 2 2 _1)e2 2 2.2 :

Xlpr,0f ~ N(u1,01/n1), (n1 — 1)s%|u1,01 ~ 0°x;, 1, and are indepen-

dently distributed.

Vljiz, 0% ~ Nl(pz.03/na), (n2 — 1)st|uz.03 ~ 022, y, and are indepen-
W, 05 2,05 /n2), (N2 8y-|p2,05 ~ 0°X;,,_1, and are indepen

dently distributed.

X and Y samples are independent.
Use Jeffreys’ prior 7(uy, p2,03,03) < 1/0? x 1/03

Calculations similar to those in one-sample case give:
VvV — )
5x

7\/712(N2_y)]data ~ i, (8)
sy

| data ~  t,,—1,

and these two are independent.

Posterior distribution of 7 = pu1 — pe given the data is non-standard (differ-

15



ence of two independent t variables) but not difficult to get.
Use Monte-Carlo Sampling: Simply generate (u1,u2) repeatedly from (8)
and construct a histogram for n = puy — ps

Example 5 (LMC) contd. Looks slightly different.

7\

Posterior mean of n = puy — o is

0.0656 equal variance;

0= B = pof data) = { 0.0657

unequal variance.

95% HPD credible interval for n = puy — ug is

[ (-0.011,0.142) equal variance;
| (—0.014,0.147) unequal variance.

7 Bayesian Computations

Bayesian analysis requires computation of expectations and quantiles of
probability distributions (posterior distributions). Most often posterior dis-
tributions will not be standard distributions. Then posterior quantities of
inferential interest cannot be computed in closed form. Special techniques
are needed.

Example M1. Suppose X1, Xo,..., X} are observed number of certain type
of stars in k similar regions. Model them as independent Poisson counts:

16



X; ~ Poisson(6;). 6; are a priori considered related. v; = log(6;) is the ith
element of v and suppose

v~ Ny (01,72 {(1 = p) Iy + p11'})

where 1 is the k-vector with all elements being 1, and y, 72 and p are known
constants. Then

k k
f(xlv) = exp (— Z{e”i - Z/sz}) /Hazz'
i=1 i=1

") ocoxp (=550 = 1) (1= )i+ 10) (0= )

k ) a1 ((1—=p) 11 Y -1
r(v]) oc exp { ~ S, o — ) — o Uopliptt) ) |
To obtain the posterior mean of 6;, compute

R e

where g(v|@) = exp {— S fer — vy} — e (el ) i) }

272

This is a ratio of two k-dimensional integrals, and as k grows, the integrals
become less and less easy to work with. Numerical integration techniques fail
to be an efficient technique in this case. This problem, known as the curse of
dimensionality, is due to the fact that the size of the part of the space that
is not relevant for the computation of the integral grows very fast with the
dimension. Consequently, the error in approximation associated with this
numerical method increases as the power of the dimension k, making the
technique inefficient.

The recent popularity of Bayesian approach to statistical applications is
mainly due to advances in statistical computing. These include the E-M
algorithm and the Markov chain Monte Carlo (MCMC) sampling techniques.

8 Monte Carlo Sampling

Consider an expectation that is not available in closed form. To estimate a
population mean, gather a large sample from this population and consider

17



the corresponding sample mean. The Law of Large Numbers guarantees that
the estimate will be good provided the sample is large enough. Specifically,
let f be a probability density function (or a mass function) and suppose the
quantity of interest is a finite expectation of the form

th(X):/ h(x)f(x)dx (11)

X

(or the corresponding sum in the discrete case). Ifi.i.d. observations X, Xo, ...

can be generated from the density f, then
o = ~ > h(X;) (12)
m m 4 (2

converges in probability to Efh(X). This justifies using h,, as an approxi-
mation for E¢h(X) for large m.

To provide a measure of accuracy or the extent of error in the approxima-

tion, compute the standard error. If Varyh(X) is finite, then Vary(hy,) =
Varyh(X)/m. Further, Varsh(X) = Eh*(X) — (th(X))2 can be esti-
mated by

i=1
and hence the standard error of h,, can be estimated by

m

A1 N T \2y1/2
T m(;(h(Xz) hin)”) "

Confidence intervals for E¢h(X): Using CLT

\/ﬁ(ﬁm _th(X)) N

m—0o0

N(0,1), so

Sm
(him —ZQ/QS,,,,/\/E, 77,,,,,—}—2&/25,,,,/\/m) can be used as an approximate 100(1—
@)% confidence interval for E;h(X), with z,/, denoting the 100(1 — a/2)%
quantile of standard normal.

If we want to approximate the posterior mean, try to generate i.i.d. observa-
tions from the posterior distribution and consider the mean of this sample.
This is rarely useful because most often the posterior distribution will be
a non-standard distribution which may not easily allow sampling from it.
What are some other possibilities?

18



Example M2. Suppose X is N(6,0?%) with known ¢2 and a Cauchy(u,7)
prior on 6 is considered appropriate. Then

m(0)z) o< exp (—(0 — $)2/(202)) (7'2 + (6 — u)Q)il ,

and hence the posterior mean is

E™(0)z) =

[0 {k0 (52)} (2 + 0 —w?) " df
S AL () (2 + (0 -2 " do

where ¢ denotes the density of standard normal.

E™(0]x) is the ratio of expectation of h(f) = 6/(72 + (0 — u)?) to that of
h(0) = 1/(7%2+(0—p)?), both expectations being with respect to the N (z, 0%)
distribution. Therefore, we simply sample 01,65, ... from N(z,0?) and use

Ty S 0 (P (0= )

E™(0]x) 2111 (72 + (6 — ,u)Q)fl

as our Monte Carlo estimate of E™(f|x). Note that (11) and (12) are ap-
plied separately to both the numerator and denominator, but using the same

sample of 0’s. It is unwise to assume that the problem has been completely
solved. The sample of §’s generated from N(x,0?) will tend to concen-
trate around x, whereas to satisfactorily account for the contribution of the
Cauchy prior to the posterior mean, a significant portion of the #’s should
come from the tails of the posterior distribution.

Why not express the posterior mean in the form

S 0exp (1555 ) (o) o
[ exp (U5 ) w0y a0

E™(0)z) =

and then sample #’s from Cauchy (i, 7) and use the approximation

(0] >iey Oiexp _(9¢;x)2
E™(0]z) = z?;exp (<(9;§;)>7

19



However, this is also not satisfactory because the tails of the posterior dis-
tribution are not as heavy as those of the Cauchy prior, and there will be
excess sampling from the tails relative to the center. So the convergence of
the approximation will be slower resulting in a larger error in approximation
(for a fixed m). Ideally, therefore, sampling should be from the posterior
distribution itself. With this view in mind, a variation of the above theme,
called Monte Carlo importance sampling has been developed.

Consider (11) again. Suppose that it is difficult or expensive to sample
directly from f, but there exists a probability density w that is very close to
f from which it is easy to sample. Then we can rewrite (11) as

Bih(X) — / he)f(x) de = /X h(w) 2 E () da

X
= | Ah(@)w(z)} u(z)de = B, {h(X)w(X)},
X
where w(x) = f(x)/u(x). Now apply (12) with f replaced by w and h
replaced by hw. In other words, generate i.i.d. observations X;, Xo,...
from the density v and compute

=1

The sampling density w is called the importance function. '

9 Markov Chain Monte Carlo Methods

A severe drawback of the standard Monte Carlo sampling/ importance sam-
pling: complete determination of the functional form of the posterior density
is needed for implementation.

Situations where posterior distributions are incompletely specified or are
specified indirectly cannot be handled: joint posterior distribution of the
vector of parameters is specified in terms of several conditional and marginal
distributions, but not directly.

This covers a large range of Bayesian analysis because a lot of Bayesian
modeling is hierarchical so that the joint posterior is difficult to calculate but

!Rest of these notes was not covered in the lectures and may be omitted at first reading.
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the conditional posteriors given parameters at different levels of hierarchy are
easier to write down (and hence sample from).

Markov Chains. A sequence of random variables {X,,},>0 is a Markov
chain if for any n, given the current value, X,,, the past {X;,j <n—1} and
the future {X; : j > n + 1} are independent. In other words,

P(AN BIX,) = P(A|X,,)P(B|X,), (13)

where A and B are events defined respectively in terms of the past and the
future.

Important subclass: Markov chains with time homogeneous or stationary
transition probabilities: the probability distribution of X, given X, = x|
and the past, X; : j <n —1 depends only on z and does not depend on the
values of X; : j <n—1orn.

If the set S of values {X,,} can take, known as the state space, is countable,
this reduces to specifying the transition probability matrix P = ((p;;)) where
for any two values 4, j in S, p;; is the probability that X, 1 = j given X, = 1,
i.e., of moving from state ¢ to state 7 in one time unit.

For state space S that is not countable, specify a transition kernel or transi-
tion function P(x,-) where P(x, A) is the probability of moving from z into
A in one step, i.e., P(X,,11 € A|X,, = x).

Given the transition probability and the probability distribution of the initial
value Xy, one can construct the joint probability distribution of {X; : 0 <
j < n} for any finite n. i.e.,

P(Xo=1i0, X1 =11,...,Xn-1="1ln-1,Xn = in)
= P(X,=1in|Xo=10,..., Xn-1 =1n_1)
XP(Xo =10, X1 ="11,... X1 =1n—-1)
= pi,_1i,P(Xo=710,...,Xn-1 =1n_1)
= P(Xo = i0)Pigi1 Pirio - - - Pin—1in-

A probability distribution 7 is called stationary or invariant for a transition
probability P or the associated Markov chain {X,} if it is the case that
when the probability distribution of Xy is 7 then the same is true for X, for
all n > 1. Thus in the countable state space case a probability distribution
m = {m i € S} is stationary for a transition probability matrix P if for

21



each 7 in S,
P(X;=j) = Y P(X1=j|Xo=i)P(Xo=1)

= Zﬂipij:P(XO:j):Wj‘ (14)

In vector notation it says w = (71, me,...) is a left eigenvector of the matrix
P with eigenvalue 1 and

T =mP. (15)

Similarly, if S is a continuum, a probability distribution 7 with density p(x)
is stationary for the transition kernel P(-,-) if

m(A) = /A p(z) dz = /5 Pz, A)p(z) do

forall AcCS.

A Markov chain {X,,} with a countable state space S and transition proba-
bility matrix P = ((p;;)) is said to be irreducible if for any two states ¢ and
j the probability of the Markov chain visiting j starting from ¢ is positive,

i.e., for some n > 1,p§?) = P(X, =j|Xo=1) >0.
A similar notion of irreducibility, known as Harris or Doeblin irreducibility

exists for the general state space case also.

Theorem (Law of Large Lumbers for Markov Chains). {X,},>¢ is
a Markov chain with a countable state space S and a transition probability
matrix P. Suppose it is irreducible and has a stationary probability distri-
bution 7 = (m; : i € S) as defined in (14). Then, for any bounded function
h: S — R and for any initial distribution of X

n—1
LY hx) = Y nGim, (16)
i=0 j

in probability as n — oo.

A similar law of large numbers (LLN) holds when the state space S is not
countable. The limit value in (16) will be the integral of h with respect to the
stationary distribution 7. A sufficient condition for the validity of this LLN
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is that the Markov chain {X,} be Harris irreducible and have a stationary
distribution 7.

How is this Useful?

A probability distribution m on a set S is given. Want to compute the
“integral of i with respect to 7", which reduces to »; h(j)7; in the countable
case.

Look for an irreducible Markov chain {X,} with state space S and stationary
distribution m. Starting from some initial value Xy, run the Markov chain
{X;} for a period of time, say 0,1,2,...n — 1 and consider as an estimate

= = 3 h(X;). (17)

By the LLN (16), p,, will be close to ; h(j)m; for large n.
This technique is called Markov chain Monte Carlo (MCMC).

To approximate w(A) = ZjeA mj for some A C S simply consider

n—1
ma(4) = - 30 Ta(X;) — w(4),
0

where I4(X;) =1if X; € A and 0 otherwise.

An irreducible Markov chain {X,,} with a countable state space S is called
aperiodic if for some i € S the greatest common divisor, g.c.d. {n : ng) >
0} = 1. Then, in addition to the LLN (16), the following result on the

convergence of P(X,, = j) holds.
D P = ) = = 0 (18)
J

as n — oo, for any initial distribution of Xy. In other words, for large n
the probability distribution of X, will be close to w. There exists a result
similar to (18) for the general state space case also.

This suggests that instead of doing one run of length n, one could do N
independent runs each of length m so that n = Nm and then from the ‘"
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run use only the m™ observation, say, X, and consider the estimate
1 N
AiNm = 2‘1 A X i)- (19)
1=

Metropolis-Hastings Algorithm

Very general MCMC method with wide applications. Idea is not to directly
simulate from the given target density (which may be computationally diffi-
cult), but to simulate an easy Markov chain that has this target density as
the stationary distribution.

Let 7 be the target probability distribution on S, a finite or countable set.
Let @ = ((¢s5)) be a transition probability matrix such that for each 4, it is
computationally easy to generate a sample from the distribution {g;; : j €
S}. Generate a Markov chain {X,,} as follows. If X,, = i, first sample from
the distribution {g;; : j € S} and denote that observation Y. Then, choose
X1 from the two values X, and Y,, according to

P(Xn+1 = Yn|XnuYn) - p(Xn7Yn) =1- P(Xn+1 - Xn|XnaYn)7

where the “acceptance probability” p(-,-) is given by

p(i,7) = min {ﬂ@, 1} for all (¢,7) such that mq;; > 0.
T ij

{X,} is a Markov chain with transition probability matrix P = ((p;;)) given
by

qijPij J# 1,
Pij =94 1= pw, Jj=i. (20)
ki

@ is called the “proposal transition probability” and p the “acceptance prob-
ability”. A significant feature of this transition mechanism P is that P and
m satisfy

TiPij = TjPji for all Z,j (21)

This implies that for any j
> mipi =m0y pii =, (22)
% %
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or, m is a stationary probability distribution for P.

Suppose S is irreducible with respect to Q and m; > 0 for all 7 in S. It
can then be shown that P is irreducible, and because it has a stationary
distribution 7, LLN (16) is available. This algorithm is thus a very flexible
and useful one. The choice of @) is subject only to the condition that S is
irreducible with respect to ). A sufficient condition for the aperiodicity of
P is that p;; > 0 for some 4 or equivalently

Z ¢ijpi; < 1.

i#1
A sufficient condition for this is that there exists a pair (¢,j) such that
TiqQij > 0 and Tiq5i < T;Qij-

Recall that if P is aperiodic, then both the LLN (16) and (18) hold.

If S is not finite or countable but is a continuum and the target distribution
m(-) has a density p(-), then one proceeds as follows: Let () be a transition
function such that for each z, Q(z,-) has a density ¢(z,y). Then proceed as
in the discrete case but set the “acceptance probability” p(x,y) to be

i [ P@aly: @)
ploy) = {p(w)Q(w,y)’l}

for all (x,y) such that p(z)g(x,y) > 0.

A particularly useful feature of the above algorithm is that it is enough
to know p(-) upto a multiplicative constant as the “acceptance probability”
p(+,-) needs only the ratios p(y)/p(z) or m;/m;.

This assures us that in Bayesian applications it is not necessary to have the
normalizing constant of the posterior density available for computation of
the posterior quantities of interest.

Gibbs Sampling

Most of the new problems that Bayesians are asked to solve are high-dimensional:
e.g. micro-arrays, image processing. Bayesian analysis of such problems in-
volve target (posterior) distributions that are high-dimensional multivariate
distributions.

In image processing, typically one has N x N square grid of pixels with
N = 256 and each pixel has k > 2 possible values. Each configuration has
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256)2 components and the state space S has k(250 configurations. How
p p g

does one simulate a random configuration from a target distribution over

such a large S7

Gibbs sampler is a technique especially suitable for generating an irreducible
aperiodic Markov chain that has as its stationary distribution a target dis-
tribution in a high-dimensional space having some special structure.

The most interesting aspect of this technique: to run this Markov chain, it
suffices to generate observations from univariate distributions.

The Gibbs sampler in the context of a bivariate probability distribution can
be described as follows. Let 7 be a target probability distribution of a bi-
variate random vector (X,Y’). For each z, let P(z,-) be the conditional
probability distribution of Y given X = x. Similarly, let Q(y,-) be the con-
ditional probability distribution of X given Y = y. Note that for each =,
P(z,-) is a univariate distribution, and for each y, Q(y,-) is also a univari-
ate distribution. Now generate a bivariate Markov chain 7, = (X,,Y,) as
follows:

Start with some Xy = xg. Generate an observation Yy from the distribution
P(zp,-). Then generate an observation X; from Q(Yp,-). Next generate an
observation Y; from P(X1,-) and so on. At stage n if Z,, = (X,,Y,) is
known, then generate X,, 11 from Q(Y,,,) and Y, 41 from P(X,11,-).

If 7 is a discrete distribution concentrated on {(z;,y;) :1 <i < K,1 <j <
L} and if m; = w(z,y;) then P(z;,y;) = mij/m. and Q(yj, xi) = mij/m.5,
where ;. = Zj Tij, m; = » ;M. Thus the transition probability matrix
R = ((7(ij),(ke))) for the {Z,} chain is given by

Taj,ke) = Qs xr)P(Tk, ye)
Tk The
T Tk

Verify that this chain is irreducible, aperiodic, and has 7 as its stationary
distribution. Thus LLN (16) and (18) hold in this case. Thus for large n,
Zp can be viewed as a sample from a distribution that is close to m and one
can approximate >, ; h(i, j)mi; by d_7_; h(X;,Yi)/n.

lustration: Consider sampling from ( )}f > ~ N <( 8 )s [ ; f ]> The
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conditional distribution of X given Y = y and that of ¥ given X = x are
XY =y~ N(py,1 —p*) and Y|X =z ~ N(pz,1 - p%). (23

Using this property, Gibbs sampling proceeds as follows: Generate (X,,,Y,),
n=20,1,2,..., by starting from an arbitrary value zy for Xy, and repeat the
following steps for ¢ = 0,1,...,n.

1. Given z; for X, draw a random deviate from N (pz;,1— p?) and denote
it by Y;.

2. Given y; for Y, draw a random deviate from N(py;, 1 — p?) and denote
it by Xi—l—l-

The theory of Gibbs sampling tells us that if n is large, then (x,,y,) is a

random draw from a distribution that is close to No <( 8 >, [ ; g_) })
Multivariate extension: 7 is a probability distribution of a k-dimensional
random vector (X1, Xo,..., Xg). If w = (uq,ue,...,u) is any k-vector, let
w_; = (U, u2, ..., Ui—1,Uit1,...,u;) be the K — 1 dimensional vector result-
ing by dropping the ith component u;. Let m;(-|z_;) denote the univariate
conditional distribution of X; given that X _; = (X1, X2, Xi—1, Xit1,. .., Xk)
x_;. Starting with some initial value for Xo = (xo1,z02,...,%or) gener-
ate X7 = (X11,X12,...,X1x) sequentially by generating X;; according to
the univariate distribution 71 (-|x¢_,) and then generating X2 according to
o (+|(X11, o3, Tod, - - - , Tok) and so on.

The most important feature to recognize here is that all the univariate condi-
tional distributions, X;|X_; = _;, known as full conditionals should easily
allow sampling from them. This is the case in most hierarchical Bayes prob-
lems. Thus, the Gibbs sampler is particularly well adapted for Bayesian
computations with hierarchical priors.

Rao-Blackwellization

The variance reduction idea of the famous Rao-Blackwell theorem in the
presence of auxiliary information can be used to provide improved estimators
when MCMC procedures are adopted.

Theorem (Rao-Blackwell) Let §(X1, Xo,...,X,,) be an estimator of 6
with finite variance. Suppose that T is sufficient for 6, and let 6*(7"), defined
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by 0*(t) = E(6(X1, Xs,...,X,)|T = t), be the conditional expectation of
(X1, Xa,...,X,) given T'=t. Then

E(0*(T) —0)* < E(0(X1, Xo,...,X,) — 0)%

The inequality is strict unless § = §*, or equivalently, ¢ is already a function
of T

By the property of iterated conditional expectation,
E(5*(T)) = E[B(5(Xy, X, .., X,)|T)] = B(O(X1, X, ..., Xp)).

Therefore, to compare the mean squared errors (MSE) of the two estimators,
compare their variances only. Now,

Var(8(X1, X, ..., X,)) = Var|E(S|T)] + E[Var(6|T)]
= Var(6*) + E[Var(8|T)] > Var(5"),

unless Var(6|T) = 0, which is the case only if § is a function of 7.

The Rao—Blackwell theorem involves two key steps: variance reduction by
conditioning and conditioning by a sufficient statistic. The first step is based
on the analysis of variance formula: For any two random variables S and T,
because

Var(S) = Var(E(S|T)) + E(Var(S|T)),

one can reduce the variance of a random variable S by taking conditional
expectation given some auxiliary information 7. This can be exploited in
MCMC.

(X;,Y;),7=1,2,...,N: asingle run of the Gibbs sampler algorithm with a
target distribution of a bivariate random vector (X,Y"). Let h(X) be a func-
tion of the X component of (X,Y) and let its mean value be p. Goal is to
estimate p. A first estimate is the sample mean of the h(X;),j =1,2,...,N.
From the MCMC theory, as N — oo, this estimate will converge to u in prob-
ability. The computation of variance of this estimator is not easy due to the
(Markovian) dependence of the sequence {X;,j = 1,2,...,N}. Suppose
we make n independent runs of Gibbs sampler and generate (X;;,Y;;),j =
1,2,...,N;i = 1,2,...,n. Suppose that N is sufficiently large so that
(Xin,Yin) can be regarded as a sample from the limiting target distribu-
tion of the Gibbs sampling scheme. Thus (X;n,Yin),? = 1,2,...,n form a
random sample from the target distribution. Consider a second estimate of
p—the sample mean of h(X;n),i =1,2,...,n.
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This estimator ignores part of the MCMC data but has the advantage that
the variables h(X;n), ¢ = 1,2,...,n are independent and hence the variance

of their mean is of order n~'. Now applying the variance reduction idea

of the Rao-Blackwell theorem by using the auxiliary information Yy, ¢ =
1,2,...,n, one can improve this estimator as follows:

Let k(y) = E(h(X)|Y = y). Then for each i, k(Y;n) has a smaller variance
than h(X;x) and hence the following third estimator,

1 n
=1

has a smaller variance than the second one. A crucial fact to keep in mind
here is that the exact functional form of k(y) be available for implementing
this improvement.

(Example M2 continued.) X|0 ~ N(6,0?) with known ¢ and 6 ~
Cauchy (i, 7). Simulate 6 from the posterior distribution, but sampling di-
rectly is difficult.

Gibbs sampling: Cauchy is a scale mixture of normal densities, with the
scale parameter having a Gamma distribution.

() o (72+(9—u)2)_1
s [ o e (50— 7 ) A2 expl- )

so that 7(f) may be considered the marginal prior density from the joint
prior density of (6, ) where
OIX ~ N(u,7%/)) and A ~ Gamma(1/2,1/2).

This implicit hierarchical prior structure implies: 7(f|x) is the marginal
density from (0, A|z).

Full conditionals of (0, A\|z) are standard distributions:

72 o2 7252
P ~ N 24
A @ <72+)\U2x+72+)\02u’72+)\02)’ (24)
2 6 — 2
M@,z ~ A|6 ~ Exponential (7——%—2/”) . (25)
T

Thus, the Gibbs sampler will use (24) and (25) to generate (6,\) from
(0, \|z).
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Example M5. X = number of defectives in the daily production of a
product. (X | Y,0) ~ binomial(Y, 8), where Y, a day’s production, is Poisson
with known mean A, and @ is the probability that any product is defective.
The difficulty is that Y is not observable, and inference has to be made
on the basis of X only. Prior: (6 | ¥ = y) ~ Beta(w,7), with known
« and « independent of Y. Bayesian analysis here is not difficult because
the posterior distribution of §|X = x can be obtained as follows. First,
X |6 ~ Poisson(A@). Next, 6 ~ Beta(a, ). Therefore,

70X =z) o< exp(=M)O"T 1 -0 0<0<1. (26)

This is not a standard distribution, and hence posterior quantities cannot
be obtained in closed form. Instead of focusing on 6|X directly, view it as
a marginal component of (Y, 6 | X). Check that the full conditionals of this
are given by

Y|X = 2,6 ~ x + Poisson(A(1 — 0)), and

01X =z,Y =y~ Beta(a + x,y+y — x)

both of which are standard distributions.

Example M5 continued. It is actually possible here to sample from the
posterior distribution using the accept-reject Monte Carlo method:

Let g(x)/K be the target density, where K is the possibly unknown nor-
malizing constant of the unnormalized density g. Suppose h(x) is a density
that can be simulated by a known method and is close to g, and suppose
there exists a known constant ¢ > 0 such that g(x) < ch(x) for all . Then,
to simulate from the target density, the following two steps suffice. Step 1.
Generate Y ~ h and U ~ U(0,1);

Step 2. Accept X =Y if U < g(Y)/{ch(Y)}; return to Step 1 otherwise.
The optimal choice for ¢ is sup{g(x)/h(x).

In Example M5, from (26),
9(0) = exp(=AO)O"F (1 - 0 TH{0 < 0 <1},

so that h(f) may be chosen to be the density of Beta(x + «, ). Then, with
the above-mentioned choice for ¢, if  ~ Beta(x+a, ) is generated in Step 1,
its ‘acceptance probability’ in Step 2 is simply exp(—\6).

Even though this method works here, let us see how the Metropolis-Hastings
algorithm can be applied.

The required Markov chain is generated by taking the transition density
q(z,y) = q(y|z) = h(y), independently of z. Then the acceptance probability
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Figure 1: M-H frequency histogram and true posterior density.

is

()
plzy) = {g<z>h y)’l}

= min{exp(—A(y —2)),1}.

The steps involved in this “independent” M-H algorithm are:

Start at ¢ = 0 with a value x in the support of the target distribution; in
this case, 0 < xg < 1. Given x4, generate the next value in the chain as given
below.

(a) Draw Y; from Beta(z + a, 7).

(b) Let

. | Y; with probability p;
t+1) 7\ 2, otherwise,

where p; = min{exp (—A(Y; — x¢)), 1}
(c) Set t =t + 1 and go to step (a).

Run this chain until £ = n, a suitably chosen large integer. In our example,
forx =1, a =1, v =49 and A = 100, we simulated such a Markov chain.
The resulting frequency histogram is shown in Figure below, with the true
posterior density super-imposed on it.
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10 Empirical Bayes Methods for High Dimensional
Problems

This is becoming popular again, this time for ‘high dimensional’ problems.
Astronomers routinely estimate characteristics of millions of similar astro-
nomical objects — distance, radial velocity whatever. Consider the data:

X1 Xo1 Xp1
X12 X929 Xp2

Xy = : , Xo = : g Xp = : )-
Xln X2n Xpn

X represents n repeated independent observations on the jth object, j =
1,2,...p. The important point is n is small, 2, 5, or 10, whereas p is large,
such as a million.

Suppose X1, ... Xj, measure u; with variability a?.
Problem: Maximum likelihood can give wrong estimates

Take n = 2 and suppose

Xj1 145 o? 0 _
<X]2) N(( ,LL] ) 0 0_2 ) J_172’p

i.e., we measure y; with 2 independent measurements, each coming with a
N(0,02) error added to it; we do this for a very large number p of objects.
What is the MLE of 027

l(ul,...up;UZ\xl, LXp) = f(xl,...xp\,ul,...,up;UZ)

P 2
= H Hf(l“ji\uj,U

j=1i=1
1 &
= (2m0?)Pexp _2—222 Tji —
7j=11:i=1
1 &L
= (2mo?) Pexp( 5oy D D — ) 2055 - 1))
7=1 Li=1



fij = Tj = (w1 + x52)/2 and

7j=11=1
1 zp: Tj1 + x40 2+ Tj1 + Tj2
= —_— x —_ J—
2p = i 2 72 2
1 P (x]1 — xj2)2 1 P
= %22 1 _%Z(xﬂ—m]g)
7=1 7=1

Since X1 — Xjo ~ N(0,202), j =1,2...,

1 P
EZ(le - Xj2)2 L 20’2, so that
j=1

p—00
. 1y 2 PO 2
o2 = @;(Xj — Xj2) o and not o*.

Good estimates for o2 do exist, for example,

1 ¢ 2 P 2
Q_Zl(le - ng) pj0>020' .
J:

What is going wrong here?

This is not a small p, large n problem, but a small n, large p problem. i.e. a
high dimensional problem, so needs care!

As p — 00, there are too many parameters to estimate and the likelihood
function is unable to see where information lies, so tries to distribute it
everywhere.

What is the way out? Go Bayesian!

There is a lot of information available on o2 (note Z§:1(Xj - Xj9)? ~
202X127) but very little on individual p;. However, if u; are ‘similar’, there
is a lot of information on where they come from, because we get to see p
samples, p large.
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Suppose we are interested in p;. How can we use the above information?
Model as follows:

X;lpj, 0% ~ N(uj,0%/2), j=1,...p, independent observations.

02 may be assumed known, since a reliable estimate 02 = % ?Zl(Xj —

X2)? is available. Express the information that yx; are ‘similar’ in the form:

tj,j =1,...pis a random sample (collection) from N(n,7?). Where do we
get the 7 and 72, the prior mean and prior variance?

Marginally (or in predictive sense) X;,j = 1,...p is a random sample from

N(po, 72 + 02/2). Use this random sample.

Estimatenby 7= X = 1Y X, and 72 b 2= (L yP (X; — X)2—02/2 !
nbyn=X= j T by 7% = (507 25 (X o :

Now one could pretend that the prior for (p1,...pp)is N(7, 7:2) and compute

the Bayes estimates for p;:

E(uj|lXy,...X,) = (1 - B)X, + BX,
where B = ;;22/4_2 . If instead of 2 observations, each sample has n ob-
g T
servations, replace 2 by n. This is called Empirical Bayes since the prior
is estimated using data. There is also a fully Bayesian counter-part called

Hierarchical Bayes.
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