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Some Background

Some expectations

Let X be a random variable. Then the expectation of X is called the mean of X. If X
is a random variable with mean µ, then the variance of X is defined by

σ2 = Var (X) = E (X − µ)2 = EX2 − µ2

The standard deviation of X is the square root of the variance.

If X and Y are random variables with means µ and ν, then the covariance X and Y is
defined by

Cov (X, Y ) = E (X − µ) (Y − ν) = EXY − µν

The correlation coefficient ρ (X, Y ) of X and Y is defined by

ρ(X, Y ) =
Cov (X, Y )√

Var (X)Var (Y )

Some properties of expectation are the following

E (aX + b) = aEX + b,

Var (aX + b) = a2Var (X)

E (aX + bY + c) = aEX + bEY + c

Var (aX + bY + c) = a2Var (X) + b2Var (Y ) + 2abCov (X, Y )
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Random vectors, mean vectors and covariance matrix

Let Y1, ....Yn be random variables. Then

Y =




Y1
...

Yn





is a p=dimesional random vector. Then the mean vector µ =EY and covariance matrix
Σ =Cov (Y) are defined by

µ =




µ1
...

µn



 ,Σ =




Σ11 · · · Σ1n
...

. . .
...

Σn1 · · · Σnn





where
µi = EYi, Σii = Var (Yi) ,

Σij = Cov (Yi, Yj) , i "= j

Then it can be shown that
E (AY + b) = AEY + b,

Cov (AY + b) = ACov (Y)A′.

which is the basic result used in regression.

Note that the covariance matrix is a symmetric matrix. Further,

0 ≤ Var (a′Y) = a′Cov (Y) a

which implies that the covariance matrix is non-negative definite, which means there is a
matrix B such that

BB′ = Cov (Y)

Such a matrix B is called a square root of the covariance matrix. Actually there are several
such matrices. One of the most useful and easy to find in computer software is the Cholesky
square root which is a triangular matrix.

The multivariate normal distribution
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We say that an n-dimensional random vector Y has multivariate normal distribution
with mean vector µ and covariance matrix Σ and write

Y ∼Nn (µ,Σ)

if Y has joint probability density function (pdf)

f (y) = (2π)−n/2 |Σ|−1/2 exp{−1

2
(y − µ)′ Σ−1 (y − µ)}, ∀y

Note that this function has the two worst things in matrices, the determinant and the
inverse of a matrix.

For this reason people often prefer to characterize the normal distribution by the moment
generating function (mgf)

M(t) =EeY′t = exp

(
µ′t+

1

2
t′Σt

)

Note that the mgf is essentially the Laplace transform of the density function which is
M (−t) . If we were going to derive properties of multivariate normal distribution, we would
use the mgf.

Thre important properties of multivariate normal are the following

1. (basic fact about multivariate normal) Y ∼Nn (µ,Σ) implies

AY + b ∼Nq (Aµ + b,AΣA′)

2. Y ∼Nn (µ,Σ) implies Yi ∼ N1 (µi, Σii) .

3. If U and V are jointly normally distributed, then Cov(U, V ) = 0 ⇒ U and V are
independent.

We now give a brief digression on how to simulate a multivariate normal. Let Z1, . . . Zn

be independent random variables, Zi ∼ N (0, 1) ,

Z =




Z1
...

Zn



 ∼ Nn (0, I)

3



Let
Y = Σ1/2Z + µ ∼N (µ,Σ)

by the basic result above when Σ1/2 is a square root of the non-nonnegative definite matrix
Σ. This shows that a multivariate normal distribution exists for any µ and any non-negative
definite matrix Σ, and gives a pretty easy was to simulate it.

Multiple linear regression

The basic model

Let y = f (x) be a univariate function of several variables. The x′s are knwon as the
predictors and the y is called the response. In simple linear regression we have one predictor
and one response; in multiple linear regression we have several predictors and one response;
and in multivariate linear regression we have several predictors and several responses. In this
tutorial we will look at multiple linear regression with simple linear regression as a special
case.

We assume that we have some data. Let Yi be the response for the ith data point and let
xi be the p-dimensional (row vector) of the predictors for the ith data point, i = 1, · · ·n.

We assume that
Yi = xiβ+ei.

Note that β is p× 1. and is an unknown parameter.

For the regression model we assume that

ei ∼ N1

(
0, σ2

)
, and the ei are indpendent.

Note that σ2 is another parameter for this model.

We further assume that the predictors are linearly independent. Thus we could have the
second predictor be the square of the first predictor, the third one the cube of the first one,
etc, so this model includes polynomial regression.

We often write this model in matrices. Let

Y =




Y1
...

Yn



 , X =




x1
...

xn



 , e =




e1
...
en
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so that Y and e are n×1 and X is n×p. The assumed linear independence of the predictors
implies that the columns of X are linearly independent and hence rank(X) = p. The normal
model can be stated more compactly as

Y = Xβ + e, e ∼Nn

(
0, σ2I

)

or as
Y ∼Nn

(
Xβ, σ2I

)

Therefore, using the formula for the multivariate normal density function, we see that
the joint density if the observations is

fβ,σ2 (y) = (2π)−n/2
∣∣σ2I

∣∣−1/2
exp{−1

2
(y −Xβ)′

(
σ2I

)−1
(y −Xβ)}

= (2π)−n/2 (
σ2

)−n/2
exp{− 1

2σ2
‖y −Xβ‖2}

Therefore the likelihood for this model is

LY

(
β,σ2

)
= (2π)−n/2 (

σ2
)−n/2

exp{− 1

2σ2
‖Y −Xβ‖2}

Estimation of β

We first mention than the assumption on the X matrix implies that X′X is invertible.

The ordinary least square (OLS) estimator of β is found by minimizing

q (β) =
∑

(Yi − xiβ)2 = ‖Y −Xβ‖2

The formula for the OLS estimator of β is

β̂ = (X′X)−1 X′Y

To see this note that

∇q (β) = 2X′ (Y −Xβ) = 2 (X′Y −X′Xβ)
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setting this equal to 0 we get the above formula for β̂. For an algebraic derivation note that

q (β) =
∥∥∥Y −Xβ̂

∥∥∥
2

+
∥∥∥Xβ̂ −Xβ

∥∥∥
2

≥
∥∥∥Y −Xβ̂

∥∥∥
2

= q
(
β̂
)

Although this is the formula we shall use for the OLS estimator, it is not how it is computed
by most software package which solve the normal equations

X′Xβ̂ = X′Y

typically using the sweep algorithm.

Note that

Eβ̂ = (X′X)−1 X′EY = (X′X)−1 X′Xβ = β

Cov
(
β̂
)

= (X′X)−1 X′σ2IX (X′X)−1 = σ2 (X′X)−1 = σ2M

Therefore
β̂ ∼ Np

(
β,σ2M

)

Therefore we note that the OLS, β̂, is an unbisaed estimator of β (Eβ̂ = β) and the

Var
(
β̂i

)
= σ2Mii

We now give some further properites of the OLS estimator.

1. (Gauss-Markov) For the non-normal model the OLS estimator is the best linear unbised
estimator (BLUE), i.e., it has smaller variance than any othe linear unbiased estimator.

2. For the normal model, the OLS is the best unbiased estimator i.e., has smaller variance
than any other unbiased estimator

3. Typically, the OLS estimator is consistent, i.e. β̂ → β
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The unbiased estimator of σ2

In regression we typically estimate σ2 by

σ̂2 =
∥∥∥Y −Xβ̂

∥∥∥
2

/ (n− p)

which is called the unbiased estimator of σ2. we first state the distribution of σ̂2.

(n− p) σ̂2

σ2
∼ χ2

n−p independently of β̂

We now give some properties of this estimator

1. For the general model σ̂2 is unbiased

2. For the normal model σ̂2 is the best unbiased estimator.

3. σ̂2 is consistent

The maximum likelihood estimator (MLE)

Looking at the likelihood above, we see that the OLS estimator maximizes the exponent

so that β̂ is the MLE of β. To find the MLE of σ2 differentiate log
(
LY

(
β̂, σ2

))
with respect

to σ, getting

σ̂2
MLE =

n− p

n
σ̂2

Note that if
p/n = q

then
Eσ̂2

MLE = (1− q) σ2, σ̂2
MLE → (1− q) σ2

so the MLE is not unbiased and is not consistent unless p/n → 0.

Interval estimators and tests.
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We first discuss infererence about βi the ith component of β. Note that β̂i the ith com-
ponent of the OLS estimator is the estimator of βi. Further

Var
(
β̂i

)
= σ2Mii

which implies that that the standard error of β̂i is

σ̂bβi
= σ̂

√
Mii

Therefore we see that a 1− α confidence interval for βi is

βi ∈ β̂i ± tα/2
n−pσ̂bβi

.

To test the null hypothesis βi = c against one and two-sided alternatives we use the t-statistic

t =
β̂i − c

σ̂bβi

∼ tn−p.

Now consider inference for δ = a′β, let

δ̂ = a′β̂ ∼ N1

(
δ,σ2a′Ma

)

therefore we see that δ̂ is the estimator of δ, and

Var
(
δ̂
)

= σ2a′Ma

so that the standard error of δ̂ is
σ̂bδ = σ̂

√
a′Ma

and therefore the confidence interval for δ is

δ ∈ δ̂ ± tα/2
n−pσ̂bδ

and the test statistic for testing δ = c is given by

δ̂ − c

σ̂bδ
∼ tn−p under the null hypothesis
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There are tests and confidence regions for vector generalizations of these procedures.

Let x0 be a row vector of predictors for an new response Y0. Let µ0 = x0β = EY0. The
µ̂0 = x0β̂ is the obvious estimator of µ0 and

Var (µ̂0) = σ2x0Mx′0 ⇒ σ̂bµ0 = σ̂
√

x0Mx′0

and therefore a confidence interval for µ0 is

µ0 ∈ µ̂0 ± tα/2
n−pσ̂bµ0

A 1− α prediction interval for Y0 is an interval such that

P (a (Y) ≤ Y0 ≤ b (Y)) = 1− α

A 1− α prediction interval for Y0 is

Y0 ∈ µ̂0 ± tα/2
n−p

√
σ̂2 + σ̂2

bµ0

The derivation of this interval is based on the fact that

Var (Y0 − µ̂0) = σ2 + σ2
bµ0

The hat matrix

The hat matrix H is defined as

H = X (X′X)−1 X

H is a symmetric idempotent matrix, i.e

H′ = H, H2 = H

Let µ = Xβ, µ̂ = Xβ̂. Then
µ̂ = HY

which is why H is called the hat matrix. Now let

H⊥ = I−H
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then H⊥ is also a symmetric idempotent matrix which is orthogonal to H, i.e

H′H⊥= 0

Then
(n− p) σ̂2 =

∥∥H⊥Y
∥∥

Note that
Y = HY + H⊥Y

We think of think of HY as having information about the signal µ and H⊥Y as having
information about the noise Y −µ. For the rest of this talk, we shall use H for this matrices

R2, adjusted R2 and predictive R2

Let

T 2 =
∑ (

Yi − Y
)2

, S2 =
∥∥∥Y −Xβ̂

∥∥∥
2

be the numerators of the variance estimators for the regression model and the intercept only
model. We think of these as measuring the ”variation” under these two models. Then the
coefficient of determination R2 is defined by

R2 =
T 2 − S2

T 2

Note that
0 ≤ R2 ≤ 1

Note that T 2 − S2 is the amount of variation in the intercept only model which has been
explained by including the extra predictors of the regression model and R2 is the proportion
of the variation left in the intercept only model which has been explained by including the
additional predictors.

Note that

R2 =
T 2

n −
S2

n
T 2

n

which suggests that this might be improved by substituting unbiased estimator for the MLE’s
getting adjusted R2

R2
a =

T 2

n−1 −
S2

n−p

T 2

n−1

= 1− n− 1

n− p

(
I −R2

)
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Both R2 and adjusted R2 suffer from the fact that the fit is being evaluated with the same
data used to compute it and the therefore the fit looks better than it is. A better procedure
is based on cross-validation. Suppose we delete the ith observation and compute β̂−i the
OLS estimator of β without the ith observation. We do this for all i. We also compute Y −i

Y −i =
∑

j $=i

Yj/ (n− 1)

the sample mean of theYi without the ith one. Then let

T 2
p =

∑ (
Yi − Y −i

)2
=

nT 2

n− 1

S2
p =

∑ (
Yi − xiβ̂−i

)2

=
∑

(
Yi − xiβ̂

1−Hii

)2

(where Hii is the ith diagonal of the hat matrix).

Then predictive R2 is defined as

R2
p =

T 2
p − S2

p

T 2
p

Predictive R2 computes the fit to the ith observation without using that observation and is
therefore a better measure of the fit of the model that R2 or adjusted R2.
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Diagnostics

Residuals

Most of the assumptions in regression follow from

e =




e1
...
en



 = Y −Xβ ∼Nn

(
0, σ2I

)

To check these assumptions we look at residuals The ordinary residuals are

ê =




ê1
...
ên



 = Y −Xβ̂ =

(I−H)Y ∼Nn

(
0, σ2 (I−H)

)

Note that the ei are assumed to have equal variances, but even if all the assumptions are
met

Var (êi) = σ2 (1−Hii)

are different. For this reason, the residual are often standardized getting the standardized
residuals

êis =
êi

σ̂
√

1−Hii

which if the assumptions are met should have constant variance about 1.

Because of the unequal variances, the ordinary residuals can be misleading, so we always
look at the standardized residuals. Many other type of residuals have been suggested, e.g.
delete one residual and t residual but they seem to look just like standardized residuals and
so it does not seem necessary to look at any other residuals but standardized residuals. Just
don’t use ordinary residuals.

The assumption on the errors is really 4 assumptions

1. Eei = 0. This means we have included enough terms in the model. If it is not
satisfied, it can often be corrected by including more terms in the model. This is often
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a tough assumption to check with residuals, since it can be shown that the average
of the residuals is always 0, even if this assumption is violated. One situation where
residuals can be useful is in polynomial regression on a variable x. In that case if we
plot the residuals against x, and if we have too few terms, we should see a pattern.

2. Var (ei) is constant. This is the most important assumption and is often violated.
One way to use residuals to check this assumption is to make a residual vs. fits plot.
For example, if we see a fanning pattern with large residuals vs. large fits, this means
the variance is increasing with the mean. If we see this it is often remedied by a log
transformation on the Yi. Another way to go is to use weighted least squares.

3. The ei are independent. This is another important assumption which is hard to check
with residuals. If it is not true, we can model the correlation between the observations
using time series methods or repeated measures or generalized least squares.

4. The ei are normally distributed. This is the least important assumption. For moder-
ate sample sizes it has been shown that that regression is robust against the normal
assumption.To use residuals to check this assumption, look at a normal scores plot of
the (standardized) residuals. It should look like a straight line. If this assumption
is not met, you can transform to achieve normality, you can use an M-estimator, an
R-estimator or some other less sensitive estimator than OLS or you can ignore it.

One other use for residual is for looking for outliers, points whose observations seem
incorrect. One rule is that an observation is an outlier if its absolute standardized residual
is greater than 3. Some data analysis programs automatically eliminate all outliers from
the data.

One (true) story that suggests that this is not a good idea has to do with the hole in
the ozone, which was not discovered by satelite (as it should have been), because the data
analysis programs used eliminated all outliers and so eliminated the data for the hole in the
ozone. It was discovered from the ground much later than it would have been discovered
by satelite if the data had not been cleaned.

We should look carefully at the outliers and think about them before eliminating them.
We often do separate analyses on the outliers and learn things we could not learn from the
clean data. Basically, before you elimate an outlier, you try to decide if it is a mistake or
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an unusual data point. If it is a mistake, eliminate it, if it is an unusual data point then try
to learn from it.

Influence

Often the values for the predictors for one observation are quite far from the other
observations which leads to that observation having a large influence on the regression line.
For example in a simple regression, we might have most of the observatiions with predictor
about 10 and one observation with predictor 1010. Then the regression line will basically
connect the one extreme observation wiht the middle of the cloud of other points, so the
response assocaited withe extreme point will essentially determine the regression line.

The leverage of the ith observation is defined as Hii, the ith diagonal of the hat matrix.
The reson for this definition is that if µ = Xβ,then

µ̂ = HY

so that the ith diagonal element of the hat matrix is the coefficient of the ith observation in its
estimated mean. If this coefficient is large, then the ith observation has a large influence on
its estimated mean and if the coefficient is small, then the ith observation has little influence
on its estimated mean.

Using the fact that H and I−H are idempotent and hence non-negative definite, we can
show that

0 ≤ Hii ≤ 1

so an observation is influential if the influence near 1 and not if it near 0. Note also that
∑

hii = trH =tr
(
X (X′X)−1 X

)
= tr

(
(X′X)−1 X′X

)
= trIp = p

so that the average leverage is
H =

∑
Hii/n = p/n

One rule of thumb which is often used is that an observation has high influence if

Hii >
3p

n
.

If we find a point which has high influence, we should think about whether we should
eliminate it. Sometimes such a point has an incorrect number for the predictor and could
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really mess up the analysis. Sometimes. however, it is a true point and may be the most
important point in fitting the regression.

Multicolinearity

One other critical assumption in regession is that the predictors linearly independent so
that X′X is invertible. Typically this assumption is satisfied. Often though one predictor
is nearly a linear combination of some others. This is called multicollinearity. When this

happens the Var
(
β̂i

)
are quite large and it is not possible to draw good inference about

the βi. So we try to detect multicolinearity and eliminate it.

The main tool for detecting multicolinearity is the variance inflation factor (VIF) for each
predictor which we now describe. Recall that

Var
(
β̂i

)
= σ2Mii

We say that the predictors are orthogonal if for any two columns of the X matrix

X′
jXk = 0, ∀j = k

We note that orthogonality is as far from multicolinearity as possible. We note if the pre-
dictors are orthogonal then

VarO

(
β̂i

)
= σ2/ ‖Xi‖2

The VIF for the ith predictor is defined as

Var
(
β̂i

)

VarO

(
β̂i

)

so the VIF tells how much the variance of β̂i has been inflated due to the multicolinearity.
If it is large then something should probably be done to eliminate the multicolinearity. If
it they are all near 1 then there is no multicolinearity.

There is another interpretation for VIF’s which is pretty interesting. Suppose we re-
gressed the jth predictor on the other predictors and let R2

j be R2 from this fit. Then, it
can be shown that

V IFj =
1

1−R2
j
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so that if the jth predictor is nearly a linear combination of the others then R2
j should be

near 1 and the V IFj should be large.

Typically in a polynomial regression model fit in the obvious way there is a great deal of
colinearity. One method which is often used to eliminate the colinearity in this situation is
to center the x term for the linear term, then square the centered x’s for the quadratic term,
etc.

Model Selection

The last regression topic we’ll talk about is how to chose which pedictors to include in
the model. We say we have overfit the model if we have too many terms and undrfit it if
we have too few terms.

Some naive approaches don’t work, such as choosing the model with the largest R2. It can
be shown that R2 always increases when variables are added to the model and we end up by
including all the predictors in the model which is usually extreme overfitting. Maximizing
adjusted R2 is a little better, but stilll overfits. Maximizing predictive R2 seems to work
reasonably well.

Another aspproach which is often used is to minimize Mallow’s Cp, which we now describe.
Let

Q =
E ‖µ̂− µ‖2

σ2
= p +

µ̂ (I−H) µ̂

σ2

Our goal is to find a model which minimizes Q. It can be shown that an unbiased estimator
of Q is

Q̂ =
(n− p) σ̂2

σ2
− n + 2p.

Q̂ is called Mallows Cp. We can already compute all of this except σ2,which we estimate
by regessing on all the possible predictors. Then we look at all the possible models and find
the one which minimizes Q̂. The main problem with this appraoch is the estimation of σ2.
Sometimes there are more potential prectors than there are observations so it not possible to
regress on all possible predictors. Also it seems bothersome that if we add more predictors
to the model, we would change σ2. It seems that the criterion for a particular model should
depend only on that model not some larger model.
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For these reasons, emphasis for model selection has shifted to penalized likelihood criteria.
Note that for this model, the maximized likelhood is

LY

(
β̂, σ̂2

MLE

)
= (2π)−

n
2
(
σ̂2

MLE

)−n
2 exp{−

∥∥∥Y −Xβ̂
∥∥∥

2

2σ̂2
MLE

}

= (2π)−
n
2
(
σ̂2

MLE

)−n
2 exp{−n

2
}

A naive approah would be to choose the model which maximizes the maximized likehood,
but that also just picks out the model with all the predictors and overfits.

The first penalized likelihood criterion suggested was the Akaike Information Criterion
(AIC), which minimizes

AIC = −2 log
(
LY

(
β̂, σ̂2

MLE

))
+ 2 (p + 1)

This criterion is based on Kullback-Liebler information. Unfortunately, it is known to overfit.

These lecture notes are essentially taken from the notes prepared by Steven F. Arnold Professor
of Statistics, Penn State University for these lectures in 2006.
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