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Mean and variance

Recall the Expectation or the mean of a random variable X is defined
as

µ = E(X) =


∑

i xiP(X = xi) for discrete X∫∞
−∞ xf (x)dx for continuous X with density f (x)

and the variance of a random variable X as

σ2 = Var(X) == E(X2)− µ2 =


∑

i x2
i P(X = xi)− µ2∫∞

−∞ x2f (x)dx− µ2



If X and Y are random variables with means µX and µY , then the
covariance of X and Y is defined by

Cov (X,Y) = E (X − µX) (Y − µY) = E(XY)− µXνY

The correlation coefficient ρ (X,Y) of X and Y is defined by

ρ(X,Y) =
Cov (X,Y)√

Var (X) Var (Y)



Properties of mean and variance

E (aX + b) = aEX + b,

Var (aX + b) = a2Var (X)

E (aX + bY + c) = aEX + bEY + c

Var (aX + bY + c) = a2Var (X) + b2Var (Y) + 2abCov (X,Y)



Random vectors, mean vectors and covariance matrix

Let Y1, ....,Yn be random variables. Then

Y =


Y1
...

Yn


is a p-dimesional random vector .

The mean vector µ =EY and covariance matrix Σ = Cov (Y) are
defined by



µ =


µ1
...
µn

 , Σ =


Σ11 · · · Σ1n

...
. . .

...
Σn1 · · · Σnn


where

µi = EYi,

Σij =

Var (Yi) for i = j

Cov (Yi,Yj) for i 6= j



It may be shown that for any n× n matrix A and n× 1 vector b

E (AY + b) = AEY + b,

Cov (AY + b) = ACov (Y) AT.

which is the basic result used in regression.



Note that the covariance matrix is a symmetric matrix. Further,

0 ≤ Var
(

aTY
)

= aTCov (Y) a

which implies that the covariance matrix is non-negative definite,
which means there is a matrix B such that

BBT = Cov (Y)

Such a matrix B is called a square root of the covariance matrix.
Actually there are several such matrices. One of the most useful and
easy to find in computer software is the Cholesky square root which is
a triangular matrix.



Multivariate normal distribution

We say that an n-dimensional random vector Y has a multivariate
normal distribution with mean vector µ and covariance matrix Σ and
write

Y ∼Nn (µ,Σ)

if Y has joint probability density function (pdf)

f (y) = (2π)−n/2 |Σ|−1/2 exp{−1
2

(y− µ)′Σ−1 (y− µ)}, ∀y

Note that this function has the two worst things in matrices, the
determinant and the inverse of a matrix.



Properties

Let Y ∼Nn (µ,Σ) and A a m× n matrix, b a m× 1 vector, then

AY + b ∼Nm
(
Aµ+ b,AΣA′

)

Yi ∼ N1 (µi,Σii) .

If U and V are random variables with joint normal distribution, then
Cov (U,V) = 0 implies U and V are independent.



Linear regression

Let f : Rn → R and y = f (x), for x ∈ Rn.
The vector x is the vector of predictors and the scalar y is the
response.
In simple linear regression we have one predictor and one response; in
multiple linear regression we have several predictors and one
response.
In this tutorial we will look at multiple linear regression with simple
linear regression as a special case.



Hubble’s data (1929)

In 1929 Edwin Hubble investigated the relationship between distance
and radial velocity of extra-galactic nebulae (celestial objects). It was
hoped that some knowledge of this relationship might give clues as to
the way the universe was formed and what may happen later. His
findings revolutionized astronomy and are the source of much
research today. Given here is the data which Hubble used for 24
nebulae.



Y = Distance (in Megaparsecs) from earth
X = The recession velocity (in km/sec)

X Y X Y X Y X Y
.032 170 .034 290 .214 −130 .263 −70
.275 −185 .275 −220 .45 200 .5 290
.5 270 .63 200 .8 300 .9 −30
.9 650 .9 150 .9 500 1.0 920
1.1 450 1.1 500 1.4 500 1.7 960
2.0 500 2.0 850 2.0 800 2.0 1090

lib.stat.cmu.edu/DASL/Datafiles/Hubble.html



From this data-set Hubble obtained the relation

Recession Velocity = H0 × Distance

where H0 is Hubble’s constant thought to be about 75 km/sec/Mpc.



How do we do this?

Let Yi be the response for the ith data point and let xi be the
p-dimensional (row vector) of the predictors for the ith data point,
i = 1, · · · , n. (In the Hubble data set, xi is scalar.)
We assume that

Yi = xiβ + ei,

where β, an unknown parameter, is a p× 1 column vector, and

ei ∼ N1
(
0, σ2) , and the ei are indpendent.

Note that σ2 is another parameter for this model.



We further assume that the predictors are linearly independent. Thus
we could have the second predictor be the square of the first predictor,
the third one the cube of the first one, etc, so this model includes
polynomial regression.



We often write this model in matrices. Let

Y =


Y1
...

Yn

 , X =


x1
...

xn

 , e =


e1
...

en


so that Y and e are n× 1 and X is n× p. The assumed linear
independence of the predictors implies that the columns of X are
linearly independent and hence rank(X) = p.



The normal model can be stated more compactly as

Y = Xβ + e, e ∼Nn
(
0, σ2I

)
or as

Y ∼Nn
(
Xβ, σ2I

)



Therefore, using the formula for the multivariate normal density
function, we see that the joint density of Y is

fβ,σ2 (y) = (2π)−n/2 ∣∣σ2I
∣∣−1/2

exp{−1
2

(y− Xβ)′
(
σ2I
)−1

(y− Xβ)}

= (2π)−n/2 (σ2)−n/2
exp{− 1

2σ2 ‖y− Xβ‖2}



Therefore the likelihood for this model is

LY
(
β,σ2) = (2π)−n/2 (σ2)−n/2

exp{− 1
2σ2 ‖Y− Xβ‖2}



Estimation of β

First, we note that the assumption on the X matrix implies that X′X is
invertible.
The ordinary least square (OLS) estimator of β is found by
minimizing

q (β) =
∑

(Yi − xiβ)2 = ‖Y− Xβ‖2

The formula for the OLS estimator of β is

β̂ =
(
X′X

)−1 X′Y



To see this note that

∇q (β) = 2X′ (Y− Xβ) = 2
(
X′Y− X′Xβ

)
setting this equal to 0 we get the above formula for β̂.
For an algebraic derivation note that

q (β) =
∥∥∥Y− Xβ̂

∥∥∥2
+
∥∥∥Xβ̂ − Xβ

∥∥∥2

≥
∥∥∥Y− Xβ̂

∥∥∥2
= q

(
β̂
)



Note that

Eβ̂ =
(
X′X

)−1 X′EY =
(
X′X

)−1 X′Xβ = β

Cov
(
β̂
)

=
(
X′X

)−1 X′σ2IX
(
X′X

)−1
= σ2 (X′X)−1

= σ2M

Therefore
β̂ ∼ Np

(
β, σ2M

)



Properties of the OLS estimator

1. (Gauss-Markov) For the non-normal model the OLS estimator is
the best linear unbised estimator (BLUE), i.e., it has smaller
variance than any othe linear unbiased estimator.

2. For the normal model, the OLS is the best unbiased estimator
i.e., has smaller variance than any other unbiased estimator

3. Typically, the OLS estimator is consistent, i.e. β̂ → β



The unbiased estimator of σ2

In regression we typically estimate σ2 by

σ̂2 =
∥∥∥Y− Xβ̂

∥∥∥2
/ (n− p)

which is called the unbiased estimator of σ2. we first state the
distribution of σ̂2.

(n− p) σ̂2

σ2 ∼ χ2
n−p independently of β̂



Properties of σ̂2

1. For the general model σ̂2 is unbiased.

2. For the normal model σ̂2 is the best unbiased estimator.

3. σ̂2 is consistent.



The maximum likelihood estimator (MLE)

Looking at the likelihood above, we see that the OLS estimator
maximizes the exponent so that β̂ is the MLE of β. To find the MLE
of σ2 differentiate log

(
LY

(
β̂, σ2

))
with respect to σ, getting

σ̂2
MLE =

n− p
n

σ̂2

Note that if
p/n = q

then
Eσ̂2

MLE = (1− q)σ2, σ̂2
MLE → (1− q)σ2

so the MLE is not unbiased and is not consistent unless p/n→ 0.



Interval estimators and tests

We first discuss infererence about βi the ith component of β. Note that
β̂i the ith component of the OLS estimator is the estimator of βi.

Further
Var
(
β̂i

)
= σ2Mii

which implies that that the standard error of β̂i is

σ̂
β̂i

= σ̂
√

Mii

Therefore we see that a 1− α confidence interval for βi is

βi ∈ (β̂i − tα/2
n−pσ̂β̂i

, β̂i + tα/2
n−pσ̂β̂i

).



To test the null hypothesis βi = c against one and two-sided
alternatives we use the t-statistic

t =
β̂i − c
σ̂
β̂i

∼ tn−p.



Now consider inference for δ = a′β, let

δ̂ = a′β̂ ∼ N1
(
δ, σ2a′Ma

)
therefore we see that δ̂ is the estimator of δ, and

Var
(
δ̂
)

= σ2a′Ma

so that the standard error of δ̂ is

σ̂
δ̂

= σ̂
√

a′Ma



Therefore the confidence interval for δ is

δ ∈ (δ̂ − tα/2
n−pσ̂δ̂, δ̂ + tα/2

n−pσ̂δ̂)

and the test statistic for testing δ = c is given by

δ̂ − c
σ̂
δ̂

∼ tn−p under the null hypothesis

There are tests and confidence regions for vector generalizations of
these procedures.



Let x0 be a row vector of predictors for a new response Y0. Let
µ0 = x0β = EY0.

µ̂0 = x0β̂ is the obvious estimator of µ0 and

Var (µ̂0) = σ2x0Mx′0 ⇒ σ̂µ̂0 = σ̂
√

x0Mx′0

and therefore a confidence interval for µ0 is

µ0 ∈ (µ̂0 − tα/2
n−pσ̂µ̂0 , µ̂0 + tα/2

n−pσ̂µ̂0)



A 1− α prediction interval for Y0 is an interval such that

P (a (Y) ≤ Y0 ≤ b (Y)) = 1− α

A 1− α prediction interval for Y0 is

Y0 ∈ (µ̂0 − tα/2
n−p

√
σ̂2 + σ̂2

µ̂0
, µ̂0 + tα/2

n−p

√
σ̂2 + σ̂2

µ̂0
)

The derivation of this interval is based on the fact that

Var (Y0 − µ̂0) = σ2 + σ2
µ̂0



The hat matrix

The hat matrix H is defined as

H = X
(
X′X

)−1 X

H is a symmetric idempotent matrix, i.e

H′ = H, H2 = H



Let µ = Xβ, µ̂ = Xβ̂. Then

µ̂ = HY

which is why H is called the hat matrix. Now let

H⊥ = I−H

then H⊥ is also a symmetric idempotent matrix which is orthogonal to
H, i.e

H′H⊥= 0



Then
(n− p) σ̂2 =

∥∥∥H⊥Y
∥∥∥

Note that
Y = HY + H⊥Y

We think of think of HY as having information about the signal µ and
H⊥Y as having information about the noise Y − µ. For the rest of
this talk, we shall use H for this matrices



R2, adjusted R2 and predictive R2

Let
T2 =

∑(
Yi − Y

)2
, S2 =

∥∥∥Y− Xβ̂
∥∥∥2

be the numerators of the variance estimators for the regression model
and the intercept only model. We think of these as measuring the
“variation” under these two models. Then the coefficient of
determination R2 is defined by

R2 =
T2 − S2

T2

Note that
0 ≤ R2 ≤ 1



Note that T2 − S2 is the amount of variation in the intercept only
model which has been explained by including the extra predictors of
the regression model and R2 is the proportion of the variation left in
the intercept only model which has been explained by including the
additional predictors.



Note that

R2 =
T2

n −
S2

n
T2

n

which suggests that this might be improved by substituting unbiased
estimator for the MLE’s getting adjusted R2

R2
a =

T2

n−1 −
S2

n−p
T2

n−1

= 1− n− 1
n− p

(
I − R2)



Both R2 and adjusted R2 suffer from the fact that the fit is being
evaluated with the same data used to compute it and the therefore the
fit looks better than it is. A better procedure is based on
cross-validation.
Suppose we delete the ith observation and compute β̂−i the OLS
estimator of β without the ith observation.
We do this for all i. We also compute Y−i

Y−i =
∑
j 6=i

Yj/ (n− 1)

the sample mean of theYi without the ith one.



Then let

T2
p =

∑(
Yi − Y−i

)2
=

nT2

n− 1

S2
p =

∑(
Yi − xiβ̂−i

)2
=
∑(

Yi − xiβ̂

1− Hii

)2

(where Hii is the ith diagonal of the hat matrix).



Then predictive R2 is defined as

R2
p =

T2
p − S2

p

T2
p

Predictive R2 computes the fit to the ith observation without using that
observation and is therefore a better measure of the fit of the model
that R2 or adjusted R2.



Back to Hubble’s data



The ML Method for Linear Regression Analysis

Scatterplot data: (x1, y1), . . . , (xn, yn)

Basic assumption: The xi’s are non-random measurements; the yi are
observations on Y , a random variable
Statistical model:

Yi = α+ βxi + εi, i = 1, . . . , n
Errors ε1, . . . , εn: a random sample from N(0, σ2)

Parameters: α, β, σ2

Yi ∼ N(α+ βxi, σ
2): The Yi’s are independent

The Yi are not identically distributed, because they have differing
means



The likelihood function is the joint density function of the observed
data, Y1, . . . ,Yn

L(α, β, σ2) =

n∏
i=1

1√
2πσ2

exp
[
−(Yi − α− βxi)

2

2σ2

]

= (2πσ2)−n/2 exp

−
n∑

i=1
(Yi − α− βxi)

2

2σ2


Use partial derivatives to maximize L over all α, β and σ2 > 0 (Wise
advice: Maximize ln L)
The ML estimators are:

β̂ =

∑n
i=1(xi − x̄)(Yi − Ȳ)∑n

i=1(xi − x̄)2 , α̂ = Ȳ − β̂x̄

and

σ̂2 =
1
n

n∑
i=1

(Yi − α̂− β̂xi)
2



Using this on Hubble’s data we get

β̂ = 454.16, α̂ = −40.78


