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1. Parametric and Nonparametric models

A parametric statistical model is a model where the joint distribu-
tion of the observations involves several unknown constants called
parameters. The functional form of the joint distribution is assumed
to be known and the only unknowns in the model are the parame-
ters. Two parametric models commonly encountered in astronomical
experiments are

1. The Poisson model in which we assume that the observations
are independent Poisson random variables with unknown com-
mon mean θ.

2. The normal model in which the observations are independently
distributed with unknown mean µ and unknown variance σ2.

In the first model θ is the parameter and in the second µ and σ2 are
the parameters.
Anything we can compute from the observations is called a statis-
tic. In parametric statistics the goal is to use observations to draw
inference about the unobserved parameters and hence about the un-
derlined model.
A nonparametric model is the one in which no assumption is made
about the functional form of the joint distribution except that the
observations are independent identically distributed (i.i.d.) from an
arbitrary continuous distribution. As a result, the nonparametric
statistics is also called distribution free statistics. There are no pa-
rameters in a nonparametric model.
A semiparametric model is the one which has parameters but very
weak assumptions are made about the actual form of the distribution
of the observations.
Both nonparametric and semiparametric models are often lumped
together and called nonparametric models.

2. Why Nonparametric?

While in many situations parametric assumptions are reasonable (e.g.
assumption of Normal distribution for the background noise, Poisson
distribution for a photon counting signal of a nonvariable source), we
often have no prior knowledge of the underlying distributions. In
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such situations, the use of parametric statistics can give misleading
or even wrong results.
We need statistical procedures which are insensitive to the model
assumptions in the sense that the procedures retain their properties
in the neighborhood of the model assumptions.

Insensitivity to model assumptions : Robustness

In particular, for
• Estimation

The estimators such that

– the variance (precision) of an estimator is not sensitive to
model assumptions (Variance Robustness).

• Hypothesis Testing

We need test procedures where

– the level of significance is not sensitive to model assump-
tions (Level Robustness).

– the statistical power of a test to detect important alter-
native hypotheses is not sensitive to model assumptions
(Power Robustness).

Apart from this, we also need procedures which are robust against
the presence of outliers in the data.

Examples:

1. The sample mean is not robust against the presence of even
one outlier in the data and is not variance robust as well. The
sample median is robust against outliers and is variance robust.

2. The t-test does not have t-distribution if the underlined distri-
bution is not normal and the sample size is small. For large
sample size, it is asymptotically level robust but is not power
robust. Also, it is not robust against the presence of outliers.

Procedures derived for nonparametric and semiparametric models are
often called robust procedures since they depend on very weak as-
sumptions.
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3. Nonparametric Density Estimation

LetX1, X2, · · · , Xn be a random sample from an unknown probability
density function f . The interest is to estimate the density function
f itself.
Suppose the random sample is drawn from a distribution with known
probability density function, say normal with mean µ and variance σ2.
The density f can then be estimated by estimating the values of the
unknown parameters µ and σ2 from the data and substituting these
estimates in the expression for normal density. Thus the parametric
density estimator is

f̂(x) =
1√

2πσ̂2
exp− 1

2σ̂2
(x− µ̂)2

where µ̂ =
∑

i xi
n

and σ̂2 =
∑

i(xi − µ̂)2

n− 1
.

In case of the nonparametric estimation of the density function, the
functional form of the density function is assumed to be unknown.
We, however, assume that the underlined distribution has a proba-
bility density f and determine its form based on the data at hand.
The oldest and widely used nonparametric density estimator is the
histogram. Given an origin x0 and a bandwidth h, we consider the
intervals of length h, also called bins, given by Bi = [x0 + mh, x0 +
(m+ 1)h) where m = 0,±1,±2, · · · and define the histogram by

f̂n(x) =
1
nh

[ number of observations in the same bin asx]

=
1
nh

∑n
i=1njI[x ∈ Bj ]

where nj = number of observations lying in bin Bj .
Though it is a very simple estimate, the histogram has many draw-
backs, the main one is that we are estimating a continuous function
by a non-smooth discrete function. It is not robust against the choice
of origin x0 and bandwidth h. Also, it is not sensitive enough to local
properties of f . Various density estimation techniques are proposed
to overcome these drawbacks, one of which is the kernel density esti-
mation.
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Kernel Density Estimation

We consider a specified kernel function K(.) satisfying the conditions

•
∫∞
−∞K(x)dx = 1

• K(.) is symmetric around 0, giving
∫∞
−∞ xK(x)dx = 0

•
∫∞
−∞ x

2K(x)dx = σ2(K) > 0

and define the kernel density estimator by

f̂n(x) =
1
nh

n∑
i=1

K

(
x−Xi

h

)
.

The estimate of f at point x is obtained using a weighted function
of observations in the h-neighborhood of x where the weight given to
each of the observations in the neighborhood depends on the choice
of kernel function K(.). Some kernel functions are

• Uniform kernel: K(u) =
1
2
I[|u| ≤ 1]

• Triangle kernel: K(u) = (1− |u|)I[|u| ≤ 1]

• Epanechnikov kernel: K(u) =
3
4

(1− u2)I[|u| ≤ 1]

• Gaussian kernel: K(u) =
1√
2π

exp(−1
2
u2)

The kernel density estimator satisfies the property∫ ∞
−∞

f̂n(x)dx = 1

and on the whole gives a better estimate of the underlined density.
Some of the properties are

• The kernel estimates do not depend on the choice of the origin,
unlike histogram.

• The kernel density estimators are ’smoother’ than the histogram
estimators since they inherit the property of the smoothness of
the kernel chosen.
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• The kernel density estimator has a faster rate of convergence.

• Increasing the bandwidth is equivalent to increasing the amount
of smoothing in the estimate. Very large h(→ ∞) will give
an oversmooth estimate and h → 0 will lead to a needlepoint
estimate giving a noisy representation of the data.

• The choice of the kernel function is not very crucial. The choice
of the bandwidth, however, is crucial and the optimal band-
width choice is extensively discussed and derived in the litera-
ture. For instance, with Gaussian kernel, the optimal (MISE)
bandwidth is

hopt = 1.06σn−
1
5

where σ is the population standard deviation, which is esti-
mated from the data.

• The kernel density estimation can be easily generalized from
univariate to multivariate data in theory.

4. Some Nonparametric Goodness-of-Fit Tests

Though the samples are drawn from unknown populations, the inves-
tigators wish to confirm whether the data fit some proposed model.
The goodness-of-fit tests are useful procedures to confirm whether
the proposed model satisfactorily approximates the observed situa-
tion. Apart from the usual Chi-Square goodness of fit test, we have
Kolmogorov-Smirnov tests which are discussed here.

4.1 One-sample Kolomogorov-Smirnov Test

This is a test of hypothesis that the sampled population follows some
specified distribution.
Suppose we observe X1, ..., Xn i.i.d. from a continuous distribution
function F (x) . We want to test the null hypothesis that F (x) =
F0 (x) for all x, against the alternative that F (x) 6= F0 (x) for some
x, where F0 is a distribution which is completely specified before we
collect the data. Let F̂n (x) be the empirical distribution function
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(e.d.f.) defined by

F̂n (x) =
1
n

n∑
i=1

I[Xi ≤ x]

The one sample Kolmogorov-Smirnov (K-S) statistic is

M = max
x

∣∣∣F̂n (x)− F0 (x)
∣∣∣

A large value of M supports F (x) 6= F0 (x) and we reject the null
hypothesis if M is too large.
It is not hard to show that the exact null distribution of M is the
same for all F0, but different for different n. Table of critical values
are given in many books. For large n

P (nM > q) •= 2
∞∑
i=1

(−1)i−1 exp
(
−2i2q2

) •= 2 exp
(
−2q2

)
Use of the last formula is quite accurate and conservative. Hence for
a size α test we reject H0 : F (x) = F0(x) if

nM >

(
−1

2
log
(α

2

))1/2

= Mα

The K-S statistic is also called K-S distance since it provides a mea-
sure of closeness of F̂n to F0. It gives a method of constructing
confidence band for the distribution which helps in identifying depar-
tures from the assumed distribution F0, as we now show. First note
that the distribution of

M (F ) = max
x

∣∣∣F̂n (x)− F (x)
∣∣∣

is the same as null distribution for the K-S test statistic. Therefore

1− α = P (M (F ) ≤Mα) = P

(∣∣∣F̂n (x)− F (x)
∣∣∣ ≤ Mα

n
for all x

)

= P

(
F (x) ∈ F̂n (x)± Mα

n
for all x

)
.

One situation in which K-S is misused is in testing for normality. For
K-S to be applied, the distribution F0 must be completely specified
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before we collect the data. In testing for normality, we have to choose
the mean and the variance based on the data. This means that we
have chosen a normal distribution which is a closer to the data than
the true F so that M is too small. We must adjust the critical value
to adjust for this as we do in χ2 goodness of fit tests. Lilliefors has
investigated the adjustment of p-values necessary to have a correct
test for this situation and shown that the test is more powerful than
the χ2 goodness of fit test for normality.
Other tests of this kind for testing F = F0 are the Anderson-Darling
test based on the statistic

n

∫ ∞
−∞

[
F̂n (x)− F0 (x)

]2
[F0 (x) (1− F0 (x))]−1 dF0(x)

and the Cramer-von Mises test based on the statistic∫ ∞
−∞

(
F̂n (x)− F0 (x)

)2
dF0(x).

In addition, the Shapiro-Wilk test is specifically designed to test for
normality.

Kullback-Liebler Distance

Kolmogorov-Smirnov test can be used as a model selection test. How-
ever, if there are more than one distributions to choose from, a better
measure of closeness between F̂n (x) and F0 (x) is given by Kullback-
Liebler distance, also called the relative entropy.
The Kullback-Liebler (K-L) distance between two distribution func-
tions F and G with corresponding probability density functions f(.)
and g(.) respectively is given by

KL(f, g) =
∫ ∞
−∞

f(x) log
f(x)
g(x)

d(x).

Note that KL(f, g) ≥ 0 and the equality holds for f(.) = g(.). The
K-L distance based on a sample of size n reduces to

n∑
i=1

f(xi) log
f(xi)
g(xi)

.

For computing the distance between the empirical distribution func-
tion and the specified distribution function F0, one can use the es-
timate of the density. Alternatively, for specific F0 such as Normal,
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Uniform, Exponential etc, the entropy estimates are available in the
literature. In addition, relative entropy based goodness-of-fit tests
are also discussed in the literature.
Broadly, to select the distribution which fits best, it is preferable to
screen the possible distributions using the Q-Q(P-P) plots and the
K-S goodness-of-fit tests and then select one of the screened distri-
butions based on the K-L distance.

4.2 Two-sample Kolmogorov-Smirnov Test

Alternatively, one may be interested in verifying whether two inde-
pendent samples come from identically distributed populations.
Suppose we have two samples X1, ..., Xm and Y1, ..., Yn from contin-
uous distribution functions F (x) and G (y) . We want to test the
null hypothesis that F (x) = G (x) for all x against the alternative
that F (x) 6= G (x) for some x. Let F̂m (x) and Ĝn (y) be the em-
pirical distribution functions for the x′s and y′s. The two sample
Kolmogorov-Smirnov (K-S) test is based on the statistic

M = max
x

∣∣∣F̂m (x)− Ĝn (x)
∣∣∣

We reject the null hypothesis if M is too large. As in the one sample
case, if m and n are large,

P (dM > q) •= 2
∞∑
i=1

(−1)i−1 exp
(
−2i2q2

) •= 2 exp
(
−2q2

)
(where d = 1/

(
1
m + 1

n

)
) so that critical values may be determined

easily.

5. Nonparametric Tests and Confidence Intervals

The nonparametric tests described here are often called distribution
free procedures because their significance levels do not depend on the
underlying model assumption i.e., they are level robust. They are
also power robust and robust against outliers.
We will mainly discuss the so-called rank procedures. In these
procedures, the observations are jointly ranked in some fashion. In
using these procedures, it is occasionally important that the small
ranks go with small observations, though often it does not matter
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which order we rank in. The models for these procedures are typically
semiparametric models.
One advantage of using ranks instead of the original observations is
that the ranks are not affected by monotone transformations. Hence
there is no need of transforming the observations before doing a rank
procedure. Another advantage of replacing the observations with the
ranks is that the more extreme observations are pulled in closer to
the other observations.
As a consequence, a disadvantage is that nearby observations are
spread out.
For example

Obs 1 1.05 1.10 2 3 100 1, 000, 00
Rank 1 2 3 4 5 6 7

The main reason we continue to study these rank procedures is the
power of the procedures. Suppose the sample size is moderately large.
If the observations are really normally distributed, then the rank
procedures are nearly as powerful as the parametric ones (which are
the best for normal data). In fact it can be shown that Pitman
asymptotic relative efficiency (ARE) of the rank procedure to the
parametric procedure is

3/π = .95

and in fact the ARE is always greater than 3/π. However the ARE
is∞ for some non-normal distributions. What this means is the rank
procedure is never much worse that parametric procedure, but can
be much better.
Ties:
We assume that the underlined probability distribution is continuous
for the rank procedures and hence, theoretically, there are no ties
in the sample. However, the samples often have ties in practice and
procedures have been developed for dealing with these ties. They
are rather complicated and not uniquely defined so we do not discuss
them here. (refer Higgins for details).

5.1 Single Sample Procedures

We introduce the concept of location parameter first.
A population is said to be located at µ0 if the population median is
µ0.
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Suppose X1, · · · , Xn is a sample from the population. We say that
X1, · · · , Xn is located at µ if X1 − µ, · · · , Xn − µ is located at 0.
Thus any statistic

S(µ) = S(X1 − µ, · · · , Xn − µ)

is useful for the location analysis if E[S(µ0)] = 0 when the population
is located at µ0. This simple fact leads to some test procedures to
test the hypothesis of population locations.

Sign Test
This is one of the oldest nonparametric procedures where the data
are converted to a series of plus and minus signs. Let S(µ) be the
sign statistic defined by

S(µ) =
∑n

i=1 sign(Xi − µ)

= #[Xi > µ]−#[Xi < µ]

= S+(µ)− S−(µ)

= 2S+(µ)− n

To find a µ̂ such that S(µ̂) = 0, we get µ̂ = median(Xi). Thus if µ0

is the median of the population, we expect E[S(µ0)] = 0.
Suppose we wish to test the hypothesis that the population median
is µ0 giving

H0 : µ = µ0 against H1 : µ 6= µ0.

Based on S(µ0), the proposed decision rule is:

Reject H0 if |S(µ0)| = |2S+(µ0)− n| ≥ c
where c is chosen such that

Pµ0 [|2S+(µ0)− n| ≥ c] = α.

It is easy to see that under H0 : µ = µ0, the distribution of S+(µ0) is

Binomial
(
n,

1
2

)
irrespective of the underlined distribution of Xi’s

and hence c can be chosen appropriately. Equivalently, we reject H0

if
S+(µ0) ≤ k or S+(µ0) ≥ n− k

where
Pµ0 [S+(µ0) ≤ k] =

α

2
.
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This fact can be used to construct a confidence interval for the pop-
ulation median µ. Consider

Pd[k < S+(d) < n− k] = 1− α

and find the smallest d such that [the number of Xi > d] < n − k.
Suppose we get

d = X(k) : #[Xi > X(k)] = n− k
dmin = X(k+1) : #[Xi > X(k + 1)] = n− k − 1.

On the same lines, we find dmax = X(n−k). Then a (1 − α)100%
distribution-free confidence interval for µ is given by [X(k+1), X(n−k)]
Note that the median is a robust measure of location and does not get
affected by the outliers. The sign test is also robust and insensitive
to the outliers and hence the confidence interval is robust too.

Wilcoxon Signed Rank test

The sign test above utilizes only the signs of the differences between
the observed values and the hypothesized median. We can use the
signs as well as the ranks of the differences, which leads to an alter-
native procedure.
SupposeX1, · · · , Xn is a random sample from an unknown population
with median µ. We assume that the population is symmetric around
µ. The hypothesis to be tested is µ = µ0 against the alternative that
µ 6= µ0.
We define Yi = Xi−µ0 and first rank the absolute values of |Yi|. Let
Ri be the rank of the absolute value of Yi corresponding to the ith

observation, i = 1, · · · , n. The signed rank of an observation is the
rank of the observation times the sign of the corresponding Yi.
Let

Si =
{

1 if (Xi − µ0) > 0
0 otherwise.

By arguments similar to the one mentioned for earlier test, we can
construct a test using the statistic

WS =
n∑
i=1

SiRi.

WS is called the Wilcoxon signed rank statistic.
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Note that WS is the sum of ranks with positive signs of Yi, i.e. the
positive signed ranks. If H0 is true, the probability of observing a
positive difference Yi = Xi − µ0 of a given magnitude is equal to the
probability of observing a negative difference of the same magnitude.
Hence, under the null hypothesis the sum of the positive signed ranks
is expected to have the same value as that of the negative signed
ranks. Thus a large or a small value of WS indicates a departure
from the null hypothesis and we reject the null hypothesis if WS is
too large or too small.
The critical values of the Wilcoxon Signed Rank test statistic are
tabulated for various sample sizes. The tables of exact distribution
of WS based on permutations is given in Higgins(2004).

Normal approximation

It can be shown that for large sample, the null distribution of WS is
approximately normal with mean µ and variance σ2 where

µ =
n (n+ 1)

4
, σ2 =

n (n+ 1) (2n+ 1)
24

and the Normal cut-off points can be used for large values of n.

Hodges-Lehmann confidence Interval for µ

We can construct a (1 − α)100% confidence interval for population
median µ using Wilcoxon Signed rank statistic, under the assumption
that the underlined population is symmetric around µ.
Let

Wij =
Xi +Xj

2
, n ≥ i ≥ j ≥ 1.

be the average of the ith and jth original observations, called a Walsh
average.
For example, consider a single sample with 5 observations X1, · · · , X5

given by −3, 1, 4, 6, 8. Then the Walsh averages are

−3 1 4 6 8
−3 −3 −1 .5 1.5 2.5
1 1 2.5 3.5 4.5
4 4 5 6
6 6 7
8 8
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We order the Wij according to their magnitude and let U[i] be the ith

largest Wij .
The median of Wij ’s provides a point estimation of the population
median µ. This median of Walsh averages is known as the Hodges-
Lehmann estimator of the population median µ.
For instance, in the data set above, the Hodges-Lehman estimator µ̂ is
the 8th largest Walsh average, namely µ̂ = 3.5 whereas the parametric
estimate of µ is X̄ = 3.2.
Using the Walsh averages, it is easy to see that another representation
for the Wilcoxon Signed Rank statistic is

WS = # [Wij ≥ 0]

(Note that this definition gives WS = 13 for the example.)
Now suppose that we do not know µ. Define

WS (µ) = # [Wij ≥ µ]

Then the general distribution of WS (µ) is the same as null distribu-
tion WS statistic.
Suppose that a size 1 − α two-sided Wilcoxon Signed Rank test for
µ = 0 accepts the null hypothesis if

a ≤WS < b,

where a and b depend on α. Then a (1− α)100% confidence interval
for µ is

a ≤WS (µ) < b ⇔ U[a] < µ ≤ U[b]

This confidence interval is called the Hodges-Lehmann confidence in-
terval for θ
For the data above, it can be seen from the table values that the
acceptance region for a α = .125 test is

2 ≤WS < 14

so that
U[2] < µ ≤ U[14] ⇔ − 1 < µ ≤ 7

is a 87.5% confidence interval for µ. Note that the assumed continuity
implies that the inequality can be replaced by an equality in the last
formula (but not the one before it) or vice versa.
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Note that the H-L interval is associated with the Wilcoxon signed
rank test in that the two-sided Wilcoxon test rejects µ = 0 iff 0 is not
in the confidence interval. Also note that there is no problem with
ties in either the H-L confidence interval or H-L estimator.

5.2 Two Sample Procedures

Suppose we observe two independent random samples X1, ..., Xn from
distribution function F (x) , and Y1, ..., Ym from distribution G (y)
where both F and G are continuous distributions.
We discuss the nonparametric procedures for making inference about
the difference between the two location parameters of F and G here.
In particular, we make the assumption that the distribution func-
tions of the two populations differ only with respect to the location
parameter, if they differ at all. This can alternatively be stated by
expressing G(y) = F (y + δ) where δ is the difference between the
medians.
There is no assumption of symmetry in the two sample model. The
continuity of the distributions implies there will be no ties.

Wilcoxon rank sum statistic

Consider testing δ = 0 against δ 6= 0. We first combine and jointly
rank all the observations. Let Ri and Sj be the ranks associated with
Xi and Yj . Then we could compute a two-sample t based on these
ranks. However, an equivalent test is based on

H =
n∑
i=1

Ri

Note that if δ > 0, then the X ′is should be greater than the Y ′j s, hence
the R′is should be large and hence H should be large. A similar
motivation works when δ < 0. Thus we reject the null hypothesis
H0 : δ = 0 if H is too large or too small. This test is called the
Wilcoxon rank-sum test.
Tables of exact distribution of H are available in Higgins (p 340).
For example, suppose we have two independent random samples of
size 4 and 3. Suppose further that we observe 37, 49, 55, 57 in the
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first sample and 23, 31, 46 in the second. We get

obs 37 49 55 57 23 31 46
rank 3 5 6 7 1 2 4

Therefore, for the observed data

H = 21

Again we reject if the observed H is one of the two largest or two
smallest values. Based on the exact permutation distribution, we
reject the null hypothesis as the p-value is 2× 2/35 = .101.

Normal approximation

It can be shown that for large sample the null distribution of H is
approximately normal with mean µ and variance σ2 where

µ =
m (m+ n+ 1)

2
, σ2 =

mn (m+ n+ 1)
12

Suppose, as above,we compute H = 21 based on a samples of size 4
and 3. In this case µ = 16, σ2 = 8, so the approximate p-value is
(using a continuity correction)

2P (H ≥ 21) = 2P (H ≥ 20.5) =

2P
(
Q− 16√

8
≥ 20.5− 16√

8

)
= 2P (Z ≥ 1.59) = .11

which is close to the true p-value derived above even for this small
sample size.

Mann-Whitney test

Let
Vij = Xi − Yj ,

We define
U = # (Vij > 0)

which is the Mann-Whitney statistic. The Mann-Whitney test
rejects the null hypothesis H0 : δ = 0 if U is too large or too small.
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For our example we see that

23 31 46
37 14 6 −9
49 26 18 3
55 32 24 9
57 34 26 11

Therefore, for this data set U = 11.
It can be shown that there is a relationship between the Wilcoxon
rank sum H and the Mann-Whitney U :

H = U +
n (n+ 1)

2
.

Hence the critical values and p-values for U can be determined from
those for H.

The Hodges-Lehmann confidence interval for δ

Analogous to the single sample procedure, we can construct a (1 −
α)100% confidence interval for δ using the Mann-Whitney procedure.
We order Vij according to their magnitude and let V[i] be the ith

largest Vij . Then the Hodges Lehmann estimator for δ is the median
of the Vij .
Let

U (δ) = # [Vij > δ] .

Then the general distribution of U (δ) is the same as the null distri-
bution of U. Suppose that two-sided size α test the δ = 0 against
δ 6= 0 accepts the null hypothesis if

a ≤ U < b

Then a (1− α)100% confidence region for δ is given by

a ≤ U (δ) < b ⇔ V[a] < δ ≤ V[b]

which is the Hodges-Lehmann confidence interval for δ. In our exam-
ple the estimator is the average of the 6th and 7th largest of the Vij ,
giving

δ̂ = 16

The parametric estimator is X − Y = 16.2.
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To find the confidence interval, note that H = U + 10

.89 = P (12 ≤ H < 21) = P (2 ≤ U < 11)

Therefore the 89% Hodges-Lehmann confidence interval for δ is

V[2] ≤ δ < V[11] ⇔ 3 ≤ δ < 32

The classical (t) confidence interval for the data based on t-statistics
is 1.12 < δ ≤ 31.22.

Paired data

Analogous to the paired t-test in parametric inference, we can propose
a nonparametric test of hypothesis that the median of the population
of differences between pairs of observations is zero.
Suppose we observe a sequence of i.i.d. paired observations
(X1, Y1) , ..., (Xn, Yn). Let µD be the median of the population of
differences between the pairs. The goal is to draw inference about
µD. Let

Di = Xi − Yi
The distribution of Di is symmetric about µD. Therefore, we may
used the procedures discussed earlier for the one-sample model, based
on the observations Di.

5.3 k-Sample Procedure

Suppose we wish to test the hypothesis that the k samples are drawn
from the populations with equal location parameter. The Mann-
Witney-Wilcoxon procedure discussed above can be generalized to k
independent samples. The test procedure we consider is the Kruskal-
Wallis Test which is the nonparametric analogue of the parametric
one-way analysis of variance procedure.
Suppose we have k independent random samples of sizes ni, i =
1, · · · , k each, represented by Xij , j = 1, · · · , ni; i = 1, · · · , k. Let
the underlined location parameters be denoted by µi, i = 1, · · · , k.
The null hypothesis to test is that the µi are all equal against the
alternative that at least one pair µi, µi∗ is different.
For the Kruskal Wallis test procedure, we combine the k samples
and rank the observations. Let Rij be the rank associated with Xij

and let Ri. be the average of the ranks in the ith sample. If the null
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hypothesis is true, the distribution of ranks over different samples
will be random and no sample will get a concentration of large or
small ranks. Thus under the null hypothesis, the average of ranks in
each sample will be close to the average of ranks for under the null
hypothesis.
The Kruskal-Wallis test statistic is given by

KW =
12

N(N + 1)

∑
ni

(
Ri. −

N + 1
2

)2

If the null hypothesis is not true, the test statistic KW is expected
to be large and hence we reject the null hypothesis of equal locations
for large values of KW .
The tables of exact critical values are available i the literature. We
generally use a χ2 distribution with k − 1 degrees of freedom as an
approximate sampling distribution for the statistic.

6. Permutation tests

The parametric test statistics can also be used to carry out the non-
parametric test procedures. The parametric assumptions determine
the distribution of the test statistic and hence the cut-off values under
the null hypothesis. Instead, we use permutation tests to determine
the cutoff points.
We give an example below.
Consider a two sample problem with 4 observations X1, X2, X3, X4

in the first sample from cdf F (x)and 3 observations Y1, Y2, Y3 in the
second sample from cdf G (y) . We want to test the null hypothesis
F (x) = G (x) against the alternative hypothesis F (x) 6= G (x)
Suppose we observe 37, 49, 55, 57 in the first sample and 23, 31, 46
in the second (Section 5.2). Suppose we want a test with size .10.

1. The parametric test for this situation is the two-sample t-test
which rejects if

|T | =

∣∣∣∣∣∣ X − Y

Sp

√
1
4 + 1

3

∣∣∣∣∣∣ > t5,.05 = 2.015

For this data set, T = 2.08 so we reject (barely). The p-value
for these data is .092. Note that this analysis depends on the
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assumptions that the data are normally distributed with equal
variances.

2. We now look at rearrangements of the data observed. One
possible rearrangement is 31, 37 46, 55 in the first sample and
23, 49, 57 in the second. For each rearrangement, we compute
the value of the T. Note that there are(

7
4

)
= 35

such rearrangements. Under the null hypothesis (that all 7
observations come from the same distribution) all 35 rearrange-
ments are equally likely, each with probability 1/35. With
the permutation test, we reject if the value of T for the orig-
inal data is one of the 2 largest or 2 smallest. This test has
α = 4/35 = .11 The p-value for the permutation test is twice
the rank of the original data divided by 35.

3. If we do this to the data above, we see that the original data
gives the second largest value for T . (Only the rearrangement
46, 49, 55, 57 and 23, 31, 37 gives a higher T.) Therefore we
reject the null hypothesis. The p-value is 2×2/35 = .11. Note
that the only assumption necessary for these calculations to be
valid is that under the null hypothesis the two distributions be
the same (so that each rearrangement is equally likely). That
is, the assumptions are much lower for this nonparametric com-
putation.

These permutation computations are only practical for small data
sets. For the two sample model with m and n observations in the
samples, there are (

m+ n
m

)
=
(
m+ n
n

)
possible rearrangements. For example(

20
10

)
= 184, 756

so that if we had two samples of size 10, we would need to compute V
for a total of 184,756 rearrangements. A recent suggestion is that we
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don’t look at all rearrangements, but rather look a randomly chosen
subset of them and estimate critical values and p-values from the
sample.
What most people who use these tests would do in practice is use
the t-test for large samples, where the t-test is fairly robust and use
the permutation calculation in small samples where the test is much
more sensitive to assumptions.

7. Correlation coefficients

Pearson’s r

The parametric analysis assumes that we have a set of i.i.d. two-
dimensional vectors, (X1, Y1) , ..., (Xn, Yn) which are normally dis-
tributed with correlation coefficient

ρ =
cov (Xi, Yi)√
var (Xi) var (Yi)

.

ρ is estimated by the sample correlation coefficient (Pearson’s r)

r =
∑(

Xi −X
) (
Yi − Y

)√∑(
Xi −X

)2∑(
Yi − Y

)2
The null hypothesis ρ = 0 is tested with the test statistic

t =

√
n− 2
1− r2

r ∼ tn−2

under the null hypothesis.
To make this test more robust, we can use a permutation test to get
nonparametric critical values and p-values. To do the rearrange-
ments for this test, we fix the X ′s and permute the Y ′s.

Some Semiparametric correlation coefficients

A semiparametric model alternative for the normal correlation model
above is to assume that the (X1, Y1) , ..., (Xn, Yn) are i.i.d. from a
continuous bivariate distribution, implying no ties.
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Spearman’s rank correlation

We rank the X’s and Y’s separately getting ranks Ri and Si. The sam-
ple correlation coefficient between the Ri and Si is called Spearman’s
rank correlation. Suppose, for example the we observe

x 1 3 6 9 15
r 1 2 3 4 5
y 1 9 36 81 225
s 1 2 3 4 5

Then the rank correlation rS is obviously one. Note that this happens
because Y = X2. Since Y is not a linear function of X, the correlation
coefficient is less than 1. In fact the correlation coefficient is .967.
We often want to test that X and Y are independent. We reject if
rS is too large or too small. We determine the critical values and p-
values from the permutation test as described above. For reasonably
large sample sizes, it can be shown that under the null hypothesis

rS
•∼ N

(
0,

1
n− 1

)

Kendall’s coefficient of concordance

We say two of the vectors (Xi, Yi) and (Xi∗, Yi∗) are concordant if

(Xi − Yi) (Xi∗ − Yi∗) > 0

Kendall’s τ is defined by

τ = 2P [(Xi − Yi) (Xi∗ − Yi∗) > 0)− 1

We estimate Kendall’s τ by

rK = 2
# (concordant pairs)(

n
2

) − 1

To test τ = 0, we would use rK . One and two sided (exact) critical
values can be determined from permutation arguments. Approx-
imate critical value and p-values can be determined from the fact
that for reasonably large n, the null distribution is

rK
•∼ N

(
0,

4n+ 10
9 (n2 − n)

)
.
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8 Nonparametric Regression

Suppose we have n observations (Y1, X1), · · · , (Yn, Xn) on (Y,X) where
Y is the response variable and X is the predictor variable and the
aim is to model Y as a function of X.
The most widely used statistical procedure for such a problem is
linear regression model where we assume that E[Y |X = x] is a linear
function of X, specified by

Yi = β0 + β1Xi + εi, i = 1, · · · , n,

and the errors εi are taken to be uncorrelated with zero mean and
variance σ2. When not appropriate, fitting a linear regression model
to a nonlinear relationship may result in a misleading and unreliable
inference.
Nonparametric regression is a more general alternative to this set up
when the functional form of E[Y |X = x] can not be assumed. In
particular, the model considered is

Yi = m(Xi) + εi

where the regression curvem(x) is the conditional expectationm(x) =
E[Y |X = x] with E[ε|X = x] = 0 and Var[ε|X = x] = σ2(x). The
model removes the parametric restrictions on m(x) and allows the
data to dictate the alternative structure of m(x) by using the data
based estimate of m(x).
The statistical procedures which estimate the regression curve using
the information available in the neighborhood are called smoothing
techniques. Different smoothing techniques lead to different nonpara-
metric regression estimators.

8.1 Kernel Estimator

We have
m(x) = E[Y |X = x]

=
∫
y
f(x, y)
f(x)

dy

where f(x) and f(x, y) are the marginal density of X and the joint
density of X and Y respectively. On substituting the univariate and
bivariate kernel density estimates of the two densities and noting the
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properties of kernel function K(.) specified in Section 3, we get

m̂NW (x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

i=1K

(
x−Xi

h

)
≡

∑n
i=1Whi(x)Yi

which is a weighted average of the response variables in a fixed neigh-
borhood around x with weights

Whi(x) = (nh)−1

K

(
x−Xi

h

)
f̂(x)

.

m̂NW (x) is called the Nadaraya-Watson kernel estimator. Note that

• The weights depend on the kernel function K(.), the bandwidth
h and the whole sample {Xi, i = 1, · · · , n} through the kernel
density estimate f̂(x).

• For the uniform kernel, the estimate of m(x) = E[Y |X =
x] is the average of Y ′j s corresponding to the X ′js in the h-
neighborhood of x.

• Observations Yi obtain more weight in those areas where the
corresponding Xi are sparse.

• When the denominator is zero, the numerator is also equal to
zero and the estimate is set to be zero.

• Analogous to kernel density estimation, the bandwidth h de-
termines the level of smoothness of the estimate and is called
the smoothing parameter. Decreasing bandwidth leads to a less
smooth estimate. In particular, for h → 0 the estimate m̂(Xi)
converges to Yi and for h → ∞ the estimate converges to Ȳ .
The criteria of bandwidth selection and guidelines for selecting
the optimal bandwidth are available in the literature.

In case the predictors Xi, i = 1, · · · , n are not random, alternative
estimators such as Gasser-Müller kernel estimator are more appro-
priate.
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It can be shown that the Nadaraya-Watson kernel estimator is the
solution of the weighted least squares estimator obtained on minimiz-
ing

n∑
i=1

(Yi − β0)2K
(
x−Xi

h

)
over β0. This corresponds to locally approximating m(x) with a con-
stant while giving higher weights to the Y ′j s corresponding to the X ′js
in the h-neighborhood of x.
This concept is further generalized to fitting higher order polynomials
’locally’, i.e. in the neighborhood of x. In particular, we consider
minimizing

n∑
i=1

[Yi−β0−β1(x−Xi)−β2(x−Xi)2−· · ·−βp(x−Xi)p]2K
(
x−Xi

h

)
over β0, β1, · · · , βp. The resulting estimator is called the local poly-
nomial regression estimator and the appropriate choice of the degree
of polynomial p can be made based on the data.

8.2 k-Nearest Neighbor Estimator

The k-Nearest Neighbor or k − NN estimator of m(x) is also a
weighted average of response variables in the neighborhood of x.
However, unlike the kernel estimator with a fixed h-neighborhood,
we consider a varying neighborhood around x here which is defined
through the k X ′js which are closest to x.
In particular, for every x, we define the set of indexes

Jx = {i : Xi is one of the k nearest observations to x}

and construct the weight sequence {Wki(x), i = 1, · · · , n} given by

Wki(x) =


n

k
if i ∈ Jx

0 otherwise

Then the k −NN estimator of m(x) is defined as

m̂k(x) = n−1
n∑
i=1

Wki(x)Yi.
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k is the smoothing parameter here as it controls the degree of smooth-
ness of the estimated curve. For k = n the neighborhood covers the
entire sample for each x, giving m̂ni(x) = Ȳ . On the other hand,
k = 1 gives a step function which is equal to Yi for x = Xi and jumps
in the middle between two adjacent values of X. Variations of the
k−NN estimator using different weight sequences are also proposed
in the literature.

8.3 LOWESS Estimator

LOWESS stands for a LOcally WEighted Scatter plot Smoother
which combines the two smoothing techniques discussed above and
is more flexible and robust. It initially selects varying bandwidth
based on the nearest neighbors and iteratively uses the polynomial
weighted least squares fit in each neighborhood. The polynomials
considered are either linear or quadratic and the weights given to the
response variables corresponding to X ′is in the neighborhood of x are
determined by the choice of the kernel function.
LOWESS can not be expressed in a closed form and estimating it
is a computer-intensive technique. A more general technique called
LOESS is also available in the literature.
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