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Clustering

e A basic tool in data mining/pattern recognition:

— Divide a set of data into groups.

— Samples in one cluster are close and clusters are far apart.
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e Motivations:

— Discover classes of data in an unsupervised way (unsupervised learning).
— Efficient representation of data: fast retrieval, data complexity reduction.

— Various engineering purposes: tightly linked with pattern recognition.



Approaches to Clustering

e Represent samples by feature vectors.
e Define a distance measure to assess the closeness between data.
e “Closeness” can be measured in many ways.

— Define distance based on various norms.

— For stars with measured parallax, the multivariate “distance” between stars is the
spatial Fuclidean distance. For a galaxy redshift survey, however, the multivari-
ate “distance” depends on the Hubble constant which scales velocity to spatial
distance. For many astronomical datasets, the variables have incompatible units
and no prior known relationship. The result of clustering will depends on the
arbitrary choice of variable scaling.



Approaches to Clustering

e Clustering: grouping of similar objects (unsupervised learning)
e Approaches

— Prototype methods:

* K-means (for vectors)

* K-center (for vectors)

x D2-clustering (for bags of weighted vectors)
— Statistical modeling

*x Mixture modeling by the EM algorithm

* Modal clustering
— Pairwise distance based partition:

* Spectral graph partitioning

* Dendrogram clustering (agglomerative): single linkage (friends of friends al-
gorithm), complete linkage, etc.



Agglomerative Clustering

Generate clusters in a hierarchical way.

Let the data set be A = {z1,...,x,}.

Start with n clusters, each containing one data point.

Merge the two clusters with minimum pairwise distance.

Update between-cluster distance.

Iterate the merging procedure.

The clustering procedure can be visualized by a tree structure called dendrogram.
Definition for between-cluster distance?

— For clusters containing only one data point, the between-cluster distance is the
between-object distance.

— For clusters containing multiple data points, the between-cluster distance is an
agglomerative version of the between-object distances.

x Examples: minimum or maximum between-objects distances for objects in
the two clusters.

— The agglomerative between-cluster distance can often be computed recursively.



Principal Components Clustering

If the several dimensions can be satisfactorily reduced to two, by say Principal Compo-
nents, then plotting the two component scores for each object will result in a picture which

will help find clusters.
Combol7 Example:
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This figure suggests one strong dense cluster and the remaining perhaps forming another

dissipated one.



K-means

Assume there are M prototypes denoted by
Z = {Zl, Ry eeny ZM} .

Each training sample is assigned to one of the prototype. Denote the assignment
function by A(-). Then A(z;) = j means the ith training sample is assigned to the jth
prototype.

Goal: minimize the total mean squared error between the training samples and their
representative prototypes, that is, the trace of the pooled within cluster covariance
matrix.

N
arg%li}llz | i — 24 |I”

=1

Denote the objective function by
N
L(Z,A) =) |l 2= 2ae I” -
i=1

Intuition: training samples are tightly clustered around the prototypes. Hence, the
prototypes serve as a compact representation for the training data.



Necessary Conditions

e If Z is fixed, the optimal assignment function A(-) should follow the nearest neighbor
rule, that is,

A(z;) = argmingery oy |2 =2 || -

o If A(-) is fixed, the prototype z; should be the average (centroid) of all the samples
assigned to the jth prototype:

Zi:A(wi)zj Ti
TN,
J

where N; is the number of samples assigned to prototype j.



The Algorithm

Based on the necessary conditions, the k-means algorithm alternates the two steps:

— For a fixed set of centroids (prototypes), optimize A(-) by assigning each sample
to its closest centroid using Euclidean distance.

— Update the centroids by computing the average of all the samples assigned to it.

The algorithm converges since after each iteration, the objective function decreases
(non-increasing).

Usually converges fast.

Stopping criterion: the ratio between the decrease and the objective function is below
a threshold.



Example

e Training set: {1.2,5.6,3.7,0.6,0.1,2.6}.
e Apply k-means algorithm with 2 centroids, {21, 22}.

e Initialization: randomly pick z; = 2, 2z = 5.

fixed update
2 {1.2,06, 0.1, 2.6}
5 {5.6, 3.7}
{1.2,06, 0.1, 2.6} 1.125
{5.6, 3.7} 4.65
1.125 {1.2,06, 0.1, 2.6}
4.65 {5.6, 3.7}

The two prototypes are: z; = 1.125, zp = 4.65. The objective function is L(Z, A) =
5.3125.
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e Initialization: randomly pick z; = 0.8, 2o = 3.8.

fixed update
0.8 {12,06, 0.1}
3.8 {5.6, 3.7, 2.6}
{1.2,06,01} 0.633
{5.6, 3.7,2.6 } 3.967
0.633 {12,06, 0.1}
3.967 {5.6, 3.7, 2.6}

The two prototypes are: z; = 0.633, zo = 3.967. The objective function is L(Z, A) =
5.2133.

e Starting from different initial values, the k-means algorithm converges to different local
optimum.

e It can be shown that {z; = 0.633, 2, = 3.967} is the global optimal solution.
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Initialization

Randomly pick up the prototypes to start the k-means iteration.

Different initial prototypes may lead to different local optimal solutions given by k-
means.

Try different sets of initial prototypes, compare the objective function at the end to
choose the best solution.

When randomly select initial prototypes, better make sure no prototype is out of the
range of the entire data set.

Initialization in the above simulation:

— Generated M random vectors with independent dimensions. For each dimension,
the feature is uniformly distributed in [—1, 1].

— Linearly transform the jth feature, Z;, j = 1,2, ..., p in each prototype (a vector)
by: Z;s; + m;, where s; is the sample standard deviation of dimension j and m;
is the sample mean of dimension j, both computed using the training data.
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Linde-Buzo-Gray (LBG) Algorithm

e An algorithm developed in vector quantization for the purpose of data compression.

e Y. Linde, A. Buzo and R. M. Gray, ” An algorithm for vector quantizer design,” IEEE
Trans. on Communication, Vol. COM-28, pp. 84-95, Jan. 1980.

e The algorithm

1.
2.
3.

Find the centroid zg) of the entire data set.
Set £k =1,1=1.
If £ < M, split the current centroids by adding small offsets.
— If M — k > k, split all the centroids; otherwise, split only M — k of them.
— Denote the number of centroids split by
k = min(k, M — k).
(1) (2) OIe) 1 4 €,

— For example, to split z;’ into two centroids, let 2, = 277/, 25/ = 2z
where € has a small norm and a random direction.

k< k+k 1+1+1.

Use {zy), zél), ...,z,(cl)} as initial prototypes. Apply k-means iteration to update
these prototypes.

. If k < M, go back to step 3; otherwise, stop.
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Tree-structured Clustering

e Studied extensively in vector quantization from the perspective of data compression.
e Referred to as tree-structured vector quantization (TSVQ).
e The algorithm

1. Apply 2 centroids k-means to the entire data set.
2. The data are assigned to the 2 centroids.

3. For the data assigned to each centroid, apply 2 centroids k-means to them sepa-
rately.

4. Repeat the above step.
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e Compare with LBG:
— For LBG, after the initial prototypes are formed by splitting, k-means is applied
to the overall data set. The final result is M prototypes.

— For TSVQ, data partitioned into different centroids at the same level will never
affect each other in the future growth of the tree. The final result is a tree
structure.

e Fast searching
— For k-means, to decide which cell a query = goes to, blueM (the number of
prototypes) distances need to be computed.
— For the tree-structured clustering, to decide which cell a query = goes to, only
blue2 log, (M) distances need to be computed.
e Comments on tree-structured clustering:
— It is structurally more constrained. But on the other hand, it provides more
insight into the patterns in the data.

— It is greedy in the sense of optimizing at each step sequentially. An early bad
decision will propagate its effect.

— It provides more algorithmic flexibility.
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Example Distances

e Suppose cluster r and s are two clusters merged into a new cluster ¢t. Let k£ be any
other cluster.

e Denote between-cluster distance by D(-,-).
e How to get D(t, k) from D(r, k) and D(s, k)?
— Single-link clustering:
D(t, k) = min(D(r, k), D(s, k))
D(t, k) is the minimum distance between two objects in cluster ¢ and k respec-

tively.
— Complete-link clustering:
D(t, k) = max(D(r, k), D(s, k))
D(t, k) is the mazimum distance between two objects in cluster ¢ and k respec-
tively.

— Avwerage linkage clustering:
Unweighted case:

" D(r, k) + —2D(s, k)

n’l"+n3 n’l"+n3

D(t, k) =

Weighted case:
1 1
D(t, k) = §D(r, k) + §D(s, k)

D(t, k) is the average distance between two objects in cluster ¢ and k respectively.
For the unweighted case, the number of elements in each cluster is taken into
consideration, while in the weighted case each cluster is weighted equally. So
objects in smaller cluster are weighted more heavily than those in larger clusters.

— Centroid clustering:
Unweighted case:

n n
D(t, k) = " __D(rk > _D(s, k
(¢ k) Ny + N (r, )+nr+ns (5 k)
n.n
_ ' S D
Ny =+ N (T’S)

Weighted case:

Dt k) = %D(r, k) + %D(s, k) — iD(r, 5)

A centroid is computed for each cluster and the distance between clusters is given
by the distance between their respective centroids.
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— Ward’s clustering:

Ny + Ng + N
D(s, k)
Ny

D(t,k) = MD(r, k)
Ng + Nk
Ny + Ng + Ny
- D{rs)
Ny + Ng + N

Merge the two clusters for which the change in the variance of the clustering
is minimized. The variance of a cluster is defined as the sum of squared-error
between each object in the cluster and the centroid of the cluster.

e The dendrogram generated by single-link clustering tends to look like a chain. Clusters
generated by complete-link may not be well separated. Other methods are intermedi-

ates between the two.
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Pseudo Code

. Begin with n clusters, each containing one object. Number the clusters 1 through n.

. Compute the between-cluster distance D(r,s) as the between-object distance of the
two objects in r and s respectively, r, s = 1,2, ...,n. Let square matrix D = (D(r, s)).

. Find the most similar pair of clusters r, s, that is, D(r, s) is minimum among all the
pairwise distances.

. Merge r and s to a new cluster t. Compute the between-cluster distance D(¢, k) for all
k # r,s. Delete the rows and columns corresponding to r and s in D. Add a new row
and column in D corresponding to cluster ¢.

. Repeat Step 3 a total of n — 1 times until there is only one cluster left.

18
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Figure 1: Agglomerate clustering of a data set (100 points) into 9 clusters. (a): Single-link,

(b): Complete-link, (c): Average linkage, (d) Wards clustering
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Hipparcos Data

e Clustering based on log L and BV.

Kcenter clustering for Hipparcos data
T T

log L




Single linkage clustering for Hipparcos data Complete linkage clustering for Hipparcos data
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(a) Single linkage #clusters=20 (b) Complete linkage #clusters=10
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Average linkage clustering for Hipparcos data Wards linkage clustering for Hipparcos data
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(c) Average linkage #clusters=10 (d) Ward’s linkage #clusters=10

Figure 3: Clustering of the Hipparcos data
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Mixture Model-based Clustering

Each cluster is mathematically represented by a parametric distribution. Examples:
Gaussian (continuous), Poisson (discrete).

The entire data set is modeled by a mixture of these distributions.

An individual distribution used to model a specific cluster is often referred to as a
component distribution.

Suppose there are K components (clusters). Each component is a Gaussian distribution
parameterized by ju, X5. Denote the data by X, X € R¢. The density of component
k is
fr(x) = oz | px, Ze)
1 (_(x_lu'k)tzlzl(x_,u’k))

= ——————exp
(2m) || 2

The prior probability (weight) of component k is ax. The mixture density is:

F@) =) afulw) = axd(e | e, Tr) -
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Advantages

e A mixture model with high likelihood tends to have the following traits:

— Component distributions have high “peaks” (bluedata in one cluster are tight)
— The mixture model “covers” the data well (bluedominant patterns in the data are
captured by component distributions).

e blueAdvantages

— Well-studied statistical inference techniques available.
— Flexibility in choosing the component distributions.
— Obtain a density estimation for each cluster.

— A “soft” classification is available.
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EM Algorithm

The parameters are estimated by the maximum likelihood (ML) criterion using the
EM algorithm.

The EM algorithm provides an iterative computation of maximum likelihood estimation
when the observed data are incomplete.

Incompleteness can be conceptual.

— We need to estimate the distribution of X, in sample space X, but we can only
observe X indirectly through Y, in sample space ).

— In many cases, there is a mapping x — y(z) from & to Y, and z is only known
to lie in a subset of X', denoted by X(y), which is determined by the equation

y=y().
— The distribution of X is parameterized by a family of distributions f(x | #), with
parameters 6 € €, on z. The distribution of y, g(y | ) is

g<y|o>=L()f<x\e>dx.

The EM algorithm aims at finding a 6 that maximizes g(y | #) given an observed .
Introduce the function
Q0" | 0) = E(log f(z | ¢) | y,0) ,

that is, the expected value of log f(z | #') according to the conditional distribution of
x given y and parameter §. The expectation is assumed to exist for all pairs (¢',6). In
particular, it is assumed that f(z | #) > 0 for 6 € Q.

blueEM Iteration:

— E-step: Compute Q(6 | ).
— M-step: Choose 8?1 to be a value of § €  that maximizes Q(6 | ).
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EM for the Mixture of Normals

Observed data (incomplete): {zi,zs,...,z,}, where n is the sample size. Denote all
the samples collectively by x.

Complete data: {(z1,%1), (T2, Y2), s (Tn,Yn)}, where y; is the cluster (component)
identity of sample z;.

The collection of parameters, 6, includes: ax, ux, Xk, £k =1,2, ..., K.

The likelihood function is:
n K
L(x[6) = Zlog (Z ar (i pix. Ek)) :
i=1 k=1

L(x|6) is the objective function of the EM algorithm (maximize). Numerical difficulty
comes from the sum inside the log.
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e The @ function is:

Q'0) = E |log][ayé@:|m, ) |x,0
| =1
= E|)_ (log(a,) +log d(x; | sy, T0) | %, 0]
| :=1

= Y B [log(a),) +log (i | 1, 5,) | 23,0 -
=1

The last equality comes from the fact the samples are independent.

e Note that when z; is given, only y; is random in the complete data (z;,y;). Also y;
only takes a finite number of values, i.e, cluster identities 1 to K. The distribution of
Y given X = x; is the posterior probability of Y given X.

e Denote the posterior probabilities of Y =k, k =1, ..., K given x; by p; . By the Bayes
formula, the posterior probabilities are:

K
Pik o< agd(z; | pr, Xi), Zpi,k =1.
k=1
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Then each summand in Q(6'|0) is
E [log(ay,) + log o(w; | y,, 3y,) | @i, 0]

K K
= > pixlogay + > pixlogd(a; | 4, Th) -
k=1 k=1

Note that we cannot see the direct effect of 6 in the above equation, but p;; are
computed using 0, i.e, the current parameters. #' includes the updated parameters.

We then have:

n K
QE'0) = > pirlogay+

i=1 k=1

n K
> piklogdlwi |y, )

i=1 k=1

Note that the prior probabilities aj and the parameters of the Gaussian components
My, 2, can be optimized separately.
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e The a}’s subject to Zle a;, = 1. Basic optimization theories show that a) are opti-
mized by
n
al . ZZ:I p’L,k
k — .
n

e The optimization of p; and Y is simply a maximum likelihood estimation of the
parameters using samples z; with weights p; ;. Basic optimization techniques also lead
to

= izt Pk
‘ > i1 Pik

r_ Yoo piglw — ) (i — )"

e After every iteration, the likelihood function L is guaranteed to increase (may not
strictly).

e We have derived the EM algorithm for a mixture of Gaussians.
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EM Algorithm for the Mixture of
(zaussians

Parameters estimated at the pth iteration are marked by a superscript (p).
1. Initialize parameters

2. E-step: Compute the posterior probabilities for all 2 =1,...,n, k =1, ..., K.

Y RGN > )
“ .
YK aP (@ | 1P, 5P)

Dik

3. M-step:

n
(p+1) _ 21:1 Dik
ak = 7,”’

u(p—i—l) _ 2?21 Di kT
K Z?:l Dik

1 1
E(p+1) _ 2?21 pi,k($,~ — ,ul(cp’L ))(-Tz _ Iu,(cp+ ))t
k =

Z?:l Pik

4. Repeat step 2 and 3 until converge.

Comment: for mixtures of other distributions, the EM algorithm is very similar. The
E-step involves computing the posterior probabilities. Only the particular distribution ¢
needs to be changed. The M-step always involves parameter optimization. Formulas differ
according to distributions.
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Computation Issues

e If a different ¥, is allowed for each component, the likelihood function is not bounded.
Global optimum is meaningless. (Don’t overdo it!)

e How to initialize? Example:

— Apply k-means first.
— Initialize uy and Y; using all the samples classified to cluster k.
— Initialize a; by the proportion of data assigned to cluster k£ by k-means.
e In practice, we may want to reduce model complexity by putting constraints on the

parameters. For instance, assume equal priors, identical covariance matrices for all the
components.
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