The 3rd lIA-PennState Astrostatistics School

19-27th July, 2010

EM Algorithim

T .Krishnan

Strand Life Sciences, Bangalore



EM Algorithm known to astronomers as
Richardson-Lucy Deconvolution or
Richardson Lucy Algorithm

E: Expectation;M: Maximization

EM Algorithm

e generic procedure for computing maximum
Likelihood estimates (MLE) in awkward prob-
lems

e iterative procedure with E and M steps in
each iteration cycle

W.H.Richardson (1972): Baysian-based itera-
tive method of image restoration. Journal of
Optical Society of America, 62, 55—59.
L.B.Lucy (1974): An iterative technique for
the rectification of observed distributions. As-
tronomical Journal, 79, 745—754

Examples of Astronomy applications

e image restoration

e classification, say of galaxies, gamma-ray bursts
(GRB), etc.



Example of Image Restoration

J.Nufiez and J.Llacer (1998): Bayesian image recon-
struction with space-invariant noise suppression. As-
tronomy and Astrophysics Supplement Series, 131, 167—
180.

Figure 8: Raw image of planet Saturn obtained with the WF/PC camera of the Hubble

Space Telescope. F i g ure 1

Figure 9: Reconstruction of the image of Saturn using the Richardson-Lucy algorithm.

Figure 2



Example of GRB Classification

L.Hovath, L.G.Balazs, Z.Bagoly, F.Ryde, and A.Mészaros
(2006): A new definition of the intermediate group of

gamma-ray bursts. Astronomy & Astrophysics.

Table 4. Results of the EM algorithm in the
{log Too; log H3gr } plane. k=2 Ly, =920
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Table 5. Results of the EM algorithm. k =3 L4, = 980
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Table 6. Results of the EM algorithm. k =4 L4, = 982
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Fig.1. Distribution of N = 1956 GRBs in the
{log Too;log H3p} plane. The 1o ellipses of the three
Gaussian distributions are also shown, which were ob-
tained in the ML procedure. The different symbols
(crosses, filled circles and open circles) mark bursts be-
longing to the short, intermediate and long classes, re-
spectively.

Figure 3



A Bit of EM Algorithm History

e EM as a general method of ML estimation
introduced by Dempster-Laird-Rubin in 1977

A.P.Demspter, N.M.Laird, and D.B.Rubin (1977):
Maximum likelihood from incomplete data via
the EM algorithm (with discussion). Journal
of the Royal Statistical Society, B 39, 1-38.

e EM is a synthesis of innumerable similar al-
gorithms like Richardson-Lucy

e Shepp and Vardi applied EM to
Image reconstruction—medical image—Positron
Emission Tomography (PET)

L.A.Shepp and Y.Vardi (1982): Maximum like-
lihood reconstruction for emission tomography.
IEEE Transactions on Medical Imaging, 1, 113—
122.

e Shepp-Vardi algorithm is identical to algo-
rithms independently obtained by Richardson
and Lucy in astronomy context



Linear Inverse Problems

“Incomplete-data problems” form a special case of a
more general class of problems called “linear inverse
problems”.

Linear Inverse Problems with positivity restrictions
statistical estimation problems from incomplete data
solve the equation

9@ = [ he o)
Dgc
Dy, Dys: Domains of the nonnegative real-valued func-
tions g. and g

Image analysis: g. true distorted image

g. recorded blurred image

Jge, 9. 9grey-level intensities

function h(z,y), which is assumed to be a bounded non-
negative function on Dy, x D,: characterizes the blurring
mechanism

Examples: image reconstruction in PET/SPECT
traditional statistical estimation problems—grouped and

truncated data



About EM

e a method for computing MLE
e useful in many situations where direct maxi-
mization methods are tedious or impossible

Examples of these situations
e Missing data

e Incomplete data

e Censored observations

e Difficult distributions

e Unsupervised data
e Blurred images



Introduction to EM

e EM (Expectation—Maximization) algorithm

e computing maximum likelihood estimates

e ‘incomplete data problems’” —nasty

e ‘‘complete data problem’ —easier MLE

e ‘missing values” or “augmented data”

e ‘statistically tuned” optimization method

e finding the marginal posterior mode



Informal Description of EM

e formulate ‘nice’ complete-data problem

e write down log-likelihood of complete-data
problem

e start with some initial estimates of param-
eters

e E-Step: compute conditional expectation
of log-likelihood of complete data prob-
lem given actual data, at current param-
eter values

e M-Step: recompute parameter estimates
using the simpler MLE for complete data
problem

e repeat E- and M-steps until convergence
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EXAMPLES OF EM ALGORITHM

e Normal mixtures (Cluster Analysis; Classi-
fication)

e Missing data from bivariate normal

e Image Restoration: Tomography

e Hidden Markov models

e Neural Networks

10



Image restoration problem same in Astronomy
and Medical Imaging

Model for Image Restoration

Vector of emission densities (gray levels) (pa-
rameters to be estimated) at n pixels (loca-

tions) of true image: A = (A1, ..., \n)?
Vector of the observations at d positions of de-
vice y = (y1, .-, ya)”

Poisson model for counts

e Given A, vyi1,...,yq, are conditionally inde-

pendent Poisson

Yj ~ P(:“Jj)a Kty = Z )\zpm G=1,...,4d),

e p;;: conditional probablllty that photon/positron
Is counted by jth detector given that it was
emitted from ith pixel (in PET; known detec-
tor design parameters);

e p;;: known point spread function (fraction
of light from location j observed at position 7)
(Image Processing)
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Heuristic Solution for Image Restoration:

Let z;;:number of photons in pixel (7,5) in a

two-dimensional image (e.g., CCD)

ZZJNP()‘zsz) (izl,...,d;j:].,...

n
yi = > zj, (G=1,...,4d),
i=1

n
Aipij/ Z AnDh;j (1=1,...,n; 5=
h=1

IS proportion of Y; emitted by z.

1,...,d)
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If we know A, Z;; estimated by

n
YiNiDij/ D AhDh; (E)
h=1

Then ); is estimated by

d
D %
i=1
Hence the following iteration:
(k+1) _
A =

(k) & " (k)
A5 A/ Yo A gt
j=1 h=1

(z=1,...,n)

e iteration converges to MLE under Poisson
Model
e this is Richardson-Lucy algorithm

13



Above Heuristic Solution as EM Algorithm

Given problem: an incomplete-data problem
Consider Z;5 aAS missing data

consistent with y; = Z 2ij

Regard this as complete data
Complete-data log-likelihood:

d

n
l0g Le(A) = > Y {—=Xipij+2i109(Aip;j)—log 2}
i=1j=1

leading to complete-data MLE of \; as
d
D Zij
i=1
d
D Dij
i=1

(M)

We exploit (E) and (M) in an iterative scheme
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Let Z;; be the random variable corresponding
to observation 2. Given y and A(F)

n
. . k
Zij ~ Blnomlal(yj,Ag )pij/ > Ag )phj)
h=1

B, (Zij | ) = 25,

where

(k) — y]A(k)p’L]/ Z )‘}(lk)phj (E — Step)
h=1

Replace z;; by z(J) in (M) on the (k + 1)t

iteration (M-Step)

k+1 —
)\,S +1) — 1 Z Pij A(k)(ZZj | y)
71=1

= )‘z() - Z{y]pw/ Z )‘h phy

(i=1,...,n) where q; = Z Dij.
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Normal Mixtures:

Data:

3.54 3.90 3.93 5.19 3.58 4.60 3.85 4.69 4.29
4.067 3.77 3.45 5.36 2.62 4.80 4.65 3.65 3.67
6.233.351.58-0.19-1.89 0.08 0.34 0.90 -0.03
0.55 -0.57 -1.20

Histogram of 30 observations

Suspected to be from a mixture of two normals
Let us model as a mixture of N'(0,1),N(u,4)
Mixture proportions 1 —p,p,0<p <1

MLE of two parameters p, u
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Mixture Density:

o(y) = \/12_We_%y2
Oy —p) = \/LQ_WG—%@—M

N(0,1) and N(u,1) densities
Mixture of these two normal densities:

fyp, ) = {pop(y — ) + (1 —p)o(y)}

p, u unknown, 0 <p<1

Sample Y = (Y1,Y5,...,Y,) from f(y;p, )
To find MLE of p, u

Mixture resolution;

Unsupervised learning;

Cluster Analysis

17



Maximizing log-Likelihood:
Likelihood:

Ly(p,p) = | [lpé(yi — 1) + (1 — p)p(:)]
1=1

To maximize

1. Find £(p,p) =109 Ly(p, u)
- Find d(p, p) = (1, %)

2 . op ou
3. Solve £(p,u) =0
4. Find

*(p,pn)  O*(p,u)

U(p, ) = [ 325&;) az%zgi) ] = —I(p, 1 y)
Oopou ou?

called Observed Information Matrix
Newton-Raphson: Iterate:

(P uHDY = 171 (p, p; ) E(p®), uF)T

Fisher’'s Scoring Method: replace

I by Z(p,p) = E(—I(p, 115 y))
called the Expected Information Matrix.

Both are possible, but messy.
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Heuristic Description of EM for this Problem:

e Consider the corresponding supervised estimation problem

e Supervised data identifies group of each case

e If model is correct, one group has mean 0 (group 0) and other
group has mean pu # 0 (group 1)

e 4 iS estimated by sample mean of group 1

p can be estimated by the proportion in group 1

But we do not have supervised data

Make an initial guess of parameters, say pu =2,p = 0.75

e E-Step: Using this find prob say =; of case ¢z from group 1

e This is exactly like posterior prob in discriminant analysis

e M-Step: Mean of «; is an estimate of p for group 1
Weighted mean of y; with weights =; is estimate of u

e Iterate E-and M-steps until convergence

e Convergence test by say, successive parameter values

e This is EM algorithm
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Incomplete and Complete Data:

Two groups:

Group 1 with mean u (proportion p)

Group O with mean 0 (proportion 1 — p)
Pretend for each i, we know the group, say
zz=1o0r0

Supervised Learning Problem (Discriminant
Analysis)

Z = (Z]_,ZQ,. ..,Zn) i.i.d. with

P(Z;=0)=1—-p;,P(Z;=1)=0p

(Y;|2; = 0) ~ N'(0,1), (Y;|Z; = 1) ~ N (g, 1)

Then (Z;,Y;),i = 1,2,...,n called Complete
Data
(Y;),i=1,2,...,n called Incomplete Data

20



Complete Data Problem Solution:

Complete Data Likelihood:

Lzy(p,p) = [ pPe(y;—w)*(1—p)' Fig(y;)* >
1=1

— constant+p2= (1 - p)"” 2% [] ¢(y;— )™
=1

bz y(p,n) =log Lz y(p, n) = constant

n n 1 n
+logp 3 zHl0g(1-p)(n—3 z)—= 3 2i(yi—)°
(A)
=0 =
p=""h=" (B)

n
" > %
=1

MLE for Complete Data Problem simple
EM exploits this simplicity in an iterative process
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E-Step:

For iteration, initial values p(®) ;(0)
kth iteration values p(%), ()
Find surrogate for £z y(p, n) by taking

E k) .0 Uzy 0, )Y = y)

IngZ 2T 4 jog(1 — p)Z(n kL)Y
1 =1

1 n
—5 3 =M - w? (©)
i=1
where

k+1
2T = E ) k) (ZilYs = yi)

= P w0 (Zi = 1Y = y)
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M-Step:

Equation (C) same form as (A); hence MLE
same form as (B)

.Z Zz'(k_l_l) Z Zi(k+1)yi
p(F+1) — i=1 kD) = =1
i=1

k+1
2" = B(Z)Yi = y) = P(Zi = 1Y = )

_ p(F g (y; — uk))

— p®e(y; — p®) + (1 — p*))e(yy)
which is just the posterior probability (as in
Discriminant Analysis)

Iterate E- and M-steps until convergence

23



Results of EM Algorithm (starting p = 0.6; u =
3.5):

Iteration P 7
0 0.6 3.5
1 0.68 4.1
2 0.67 4.15
3 0.67 4.15

Cluster Analysis using EM algorithm for Nor-
mal Mixtures will be discussed in the Cluster
Analysis lecture.
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Example 2: Bivariate Normal Data with
Missing Values: Computations

Variate 1:
Variate 2:

8
10

11
14

16
16

18
15

6 4
20 4

20
18

25
22

9
?

13
?

Results of the EM Algorithm for Example 2.1 (Missing Data on
One Variate).

Iteration ,ugk) ,ugk) aﬁ) agg) ag;) —21og L(6%)
1 13 14.8750 40 32.3750 28.8593 1019.64
2 13 14.5528 40 21.2385 24.5787 210.930
3 13 14.5992 40 20.9241 26.2865 193.331
4 13 14.6116 40 20.8931 26.6607 190.550
5 13 14.6144 40 20.8869 26.7355 190.014
6 13 14.6150 40 20.8855 26.7503 189.908
7 13 14.6151 40 20.8852 26.7533 189.886
8 13 14.6152 40 20.8851 26.7538 189.882
9 13 14.6152 40 20.8851 26.7539 189.881
10 13 14.6152 40 20.8851 26.7540 189.881
11 13 14.6152 40 20.8851 26.7540 189.881
12 13 14.6152 40 20.8851 26.7540 189.881
o0 13 14.6152 40 20.8851 26.7540 189.881
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THEORY AND METHODOLOGY
OF EM

e Incomplete-data problems

e E- and M-steps

e Convergence of EM

e Rate of convergence of EM

e Standard error computation in EM

26



Incomplete-Data Problems

Incomplete-data problem:; incomplete-data like-
lihood L

Missing or latent or augmented data; missing
data (conditional) distribution

Complete-data problem: complete-data likeli-
hood

variety of statistical data models, including mix-
tures, convolutions, random effects, grouping,
censoring, truncated and missing observations

observed data y; density g(y|0); sample space
Y, objective is to maximize £y (0) = log(g(y|0))
Complete data x density f(x|@); sample space
X

o) = [ J(xI0)de
y=y(x)
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S(0):gradient vector (Fisher score vector)
H(0): Hessian matrix of {y(0)
I(0) = —H(0): observed information matrix

expected value of I(0)= Z(0): expected infor-
mation matrix

S(0) = O: likelihood equations

—H1: estimate of asymptotic covariance ma-
trix

Z-1(0) at 8 = 0: estimate of the asymptotic
covariance matrix

28



E- and M-Steps
y(6) = log(g(y|0))
Ux(0) = 1og(f(x]0))
Uyy(0) = log(k(x[y,0))
k(x|y,0) = f(x|y,0)/9(y|0)
x(0) = Ly(0) + £y)y(0)

Q(010") = ty(0) + H(6|0')
E—-Step: Compute

Q(6]16%)) = E(log(f(x|6))

where the expectation is taken with respect to
k(x|y, 0)

M-—Step: Maximize Q(0|0("“)) as a function of
0. to obtain §k+1)
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Appealing properties:

1. It is numerically stable with each EM iter-
ation increasing the likelihood.

2. Under fairly general conditions, it has reli-
able global convergence properties.

3. It is easily implemented, analytically and
computationally.

4. It can be used to provide estimates of ‘miss-
ing data’.

Drawbacks:

1. It does not provide a natural covariance
estimator for the MLE.

2. It is sometimes very slow to converge.
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Standard Errors of EM Estimates

1. No natural way to compute covariance ma-
trix

2. Augment EM computation with standard
error computation

3. Exploit EM computations

4. Known methods based on observed infor-
mation matrix, the expected information ma-
trix or on resampling methods

numerically differentiate Ey to obtain the Hes-
sian. In a EM-aided differentiation approach,
Meilijson suggests perturbation of the incomplete-
data score vector to compute the observed in-
formation matrix.
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Meng and Rubin: Supplemented EM (SEM)
algorithm numerical techniques are used to com-
pute the derivative of the EM operator M and
using this together with the complete-data ob-
served information matrix in the equation

H = QU — M)

the incomplete-data observed information ma-
trix is computed.

Jamshidian and Jennrich: approximately ob-
tains observed information matrix by numerical
differentiation and suggest various alternatives
to the SEM algorithm

Oakes’ formula
0%Ux(0) _ 0%Q(0'0) | 62Q(0'|)
502 { 96" 06’60 fo'=0
which is valid for all 8. By evaluating the right-

hand side at 8 = 0, we get the observed infor-
mation matrix.
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Other Aspects of EM

e Acceleration methods

e Monte Carlo versions

e TO compute Bayesian Posterior mode

e Connections to MCMC
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More References:

Lange, K. (1999): Numerical Analysis for Statis-
ticians. New York: Springer-Verlag.

MclLachlan, G.J., and Krishnan, T. (2008).

The EM Algorithm and Extensions. Second
Edition. New York: John Wiley & Sons.
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