Posterior Sampling \& MCMC via Metropolis-Hastings

(1) Posterior sampling
(2) Accept-reject algorithm
(3) Markov chains
(4) Metropolis-Hastings algorithm

Notes for the Astrostatistics Summer School, India, July 2010
Tom Loredo <loredo@astro. cornell.edu>

Posterior Sampling \& MCMC

(1) Posterior sampling
(2) Accept-reject algorithm
(3) Markov chains
(4) Metropolis-Hastings algorithm

Posterior Sampling

Recall the Monte Carlo algorithm for finding credible regions:

1. Create a RNG that can sample \mathcal{P} from $p\left(\mathcal{P} \mid D_{\text {obs }}\right)$
2. Draw N samples; record \mathcal{P}_{i} and $q_{i}=\pi\left(\mathcal{P}_{i}\right) \mathcal{L}\left(\mu_{i}\right)$
3. Sort the samples by the q_{i} values
4. An HPD region of probability P is the \mathcal{P} region spanned by the $100 P \%$ of samples with highest q_{i}

This approach is called posterior sampling.
Building a posterior sampler (step 1) is hard!

Posterior Sampling \& MCMC

(1) Posterior sampling
(2) Accept-reject algorithm
(3) Markov chains
(4) Metropolis-Hastings algorithm

Basic Accept-Reject Algorithm

Goal: Given $q(\mathcal{P}) \equiv \pi(\mathcal{P}) \mathcal{L}(\mathcal{P})$, build a RNG that draws samples from the probability density function ($p d f$)

$$
f(\mathcal{P})=\frac{q(\mathcal{P})}{Z} \quad \text { with } \quad Z=\int d \mathcal{P} q(\mathcal{P})
$$

The probability for a region under the pdf is the area (volume) under the curve (surface).
\rightarrow Sample points uniformly in volume under q; their \mathcal{P} values will be draws from $f(\mathcal{P})$.

The fraction of samples with \mathcal{P} (" x " in the fig) in a bin of size $\delta \mathcal{P}$ is the fractional area of the bin.

How can we generate points uniformly under the $p d f$?
Suppose $q(\mathcal{P})$ has compact support: it is nonzero in a finite contiguous region of volume V.

Generate candidate points uniformly in a rectangle enclosing $q(\mathcal{P})$.
Keep the points that end up under q.

Basic accept-reject algorithm

1. Find an upper bound Q for $q(\mathcal{P})$
2. Draw a candidate parameter value \mathcal{P}^{\prime} from the uniform distribution in V
3. Draw a uniform random number, u
4. If the ordinate $u Q<q\left(\mathcal{P}^{\prime}\right)$, record \mathcal{P}^{\prime} as a sample
5. Goto 2 , repeating as necessary to get the desired number of samples.

Efficiency $=$ ratio of areas (volumes), $Z /(Q V)$.
Two issues

- Increasing efficiency
- Handling distributions with infinite support

Envelope Functions

Suppose there is a $p d f h(\mathcal{P})$ that we know how to sample from and that roughly resembles $q(\mathcal{P})$:

- Multiply h by a constant C so $\operatorname{Ch}(\mathcal{P}) \geq q(\mathcal{P})$
- Points with coordinates $\mathcal{P}^{\prime} \sim h$ and ordinate $u C h\left(\mathcal{P}^{\prime}\right)$ will be distributed uniformly under $\operatorname{Ch}(\mathcal{P})$
- Replace the hyperrectangle in the basic algorithm with the region under $\operatorname{Ch}(\mathcal{P})$

Accept-Reject Algorithm

1. Choose an envelope function $h(\mathcal{P})$ and a constant C so it bounds q
2. Draw a candidate parameter value $\mathcal{P}^{\prime} \sim h$
3. Draw a uniform random number, u
4. If $q\left(\mathcal{P}^{\prime}\right)<\operatorname{Ch}\left(\mathcal{P}^{\prime}\right)$, record \mathcal{P}^{\prime} as a sample
5. Goto 2 , repeating as necessary to get the desired number of samples.

Efficiency $=$ ratio of volumes, Z / C.
In problems of realistic complexity, the efficiency is intolerably low for parameter spaces of more than a few dimensions.

Key idea: Propose candidates that may be accepted or rejected

Posterior Sampling \& MCMC

(1) Posterior sampling
(2) Accept-reject algorithm
(3) Markov chains
(4) Metropolis-Hastings algorithm

Markov Chain Monte Carlo

Accept/Reject aims to produce independent samples-each new \mathcal{P} is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let's introduce dependence: Choose new \mathcal{P} points in a way that

- Tends to move toward regions with higher probability than current
- Tends to avoid lower probability regions

The simplest possibility is a Markov chain:

$$
\begin{array}{r}
p(\text { next location } \mid \text { current and previous locations }) \\
=p(\text { next location } \mid \text { current location })
\end{array}
$$

A Markov chain "has no memory."

Equilibrium Distributions

Start with some (possibly random) point \mathcal{P}_{0}; produce a sequence of points labeled in order by a "time" index, \mathcal{P}_{t}.

Ideally we'd like to have $p\left(\mathcal{P}_{t}\right)=q\left(\mathcal{P}_{t}\right) / Z$ for each t. Can we do this with a Markov chain?

To simplify discussion, discretize parameter space into a countable number of states, which we'll label by x or y (i.e., cell numbers). If \mathcal{P}_{t} is in cell x, we say state $S_{t}=x$.

Focus on homogeneous Markov chains:
$p\left(S_{t}=y \mid S_{t-1}=x\right)=T(y \mid x), \quad$ transition probability (matrix)
Note that $T(y \mid x)$ is a probability distribution over y, and does not depend on t.

Aside: There is no standard notation for any of this-including the order of arguments in T !

What is the probability for being in state y at time t ?

$$
\begin{aligned}
p\left(S_{t}=y\right)= & p(\text { stay at } y)+p(\text { move to } y)-p(\text { move from } y) \\
= & p\left(S_{t-1}=y\right) \\
& +\sum_{x \neq y} p\left(S_{t-1}=x\right) T(y \mid x)-\sum_{x \neq y} p\left(S_{t-1}=y\right) T(x \mid y) \\
= & p\left(S_{t-1}=y\right) \\
& +\sum_{x \neq y}\left[p\left(S_{t-1}=x\right) T(y \mid x)-p\left(S_{t-1}=y\right) T(x \mid y)\right]
\end{aligned}
$$

If the sum vanishes, then there is an equilibrium distribution:

$$
p\left(S_{t}=y\right)=p\left(S_{t-1}=y\right) \equiv p_{\mathrm{eq}}(y)
$$

If we start in a state drawn from $p_{\text {eq }}$, every subsequent sample will be a (dependent) draw from $p_{\text {eq }}$.

Reversibility/Detailed Ballance

A sufficient (but not necessary!) condition for there to be an equilibrium distribution is for each term of the sum to vanish:

$$
\begin{aligned}
p_{\mathrm{eq}}(x) T(y \mid x) & =p_{\mathrm{eq}}(y) T(x \mid y) \quad \text { or } \\
\frac{T(y \mid x)}{T(x \mid y)} & =\frac{p_{\mathrm{eq}}(y)}{p_{\mathrm{eq}}(x)}
\end{aligned}
$$

This is called the detailed balance or reversibility condition.
If we set $p_{\text {eq }}=q / Z$, and we build a reversible transition distribution for this choice, then the equilibrim distribution will be the posterior distribution.

Convergence

Problem: What about $p\left(S_{0}=x\right)$?
If we start the chain with a draw from the posterior, every subsequent draw will be from the posterior. But we can't do this!

Convergence

If the chain produced by $T(y \mid x)$ satisifies two conditions:

- It is irreducible: From any x, we can reach any y with finite probability in a finite \# of steps
- It is aperiodic: The transitions never get trapped in cycles then $p\left(S_{t}=s\right) \rightarrow p_{\text {eq }}(x)$.

Early samples will show evidence of whatever procedure was used to generate the starting point \rightarrow discard samples in an initial "burn-in" period.

Posterior Sampling \& MCMC

(1) Posterior sampling
(2) Accept-reject algorithm
(3) Markov chains
(4) Metropolis-Hastings algorithm

Designing Reversible Transitions

Set $p_{\text {eq }}(x)=q(x) / Z$; how can we build a $T(y \mid x)$ with this as its EQ dist'n?

Steal an idea from accept/reject: Start with a proposal or candidate distribution, $k(y \mid x)$. Devise an accept/reject criterion that leads to a reversible $T(y \mid x)$ for q / Z.

Using any $k(y \mid x)$ will not guarantee reversibility. E.g., from a particular x, the transition rate to a particular y may be too large:

$$
q(x) k(y \mid x)>q(y) k(x \mid y) \quad \text { Note: } Z \text { dropped out! }
$$

When this is true, we should use rejections to reduce the rate to y. Acceptance probability: Accept y with probability $\alpha(y \mid x)$; reject it with probability $1-\alpha(y \mid x)$ and stay at x :

$$
T(y \mid x)=k(y \mid x) \alpha(y \mid x)+[1-\alpha(y \mid x)] \delta_{y, x}
$$

The detailed balance condition is a requirement for $y \neq x$ transitions, for which $\delta_{y, x}=0$; it gives a condition for α :

$$
q(x) k(y \mid x) \alpha(y \mid x)=q(y) k(x \mid y) \alpha(x \mid y)
$$

Suppose $q(x) k(y \mid x)>q(y) k(x \mid y)$; then we want to suppress $x \rightarrow y$ transitions, but we want to maximize $y \rightarrow x$ transitions. So we should set $\alpha(x \mid y)=1$, and the condition becomes:

$$
\alpha(y \mid x)=\frac{q(y) k(x \mid y)}{q(x) k(y \mid x)}
$$

If instead $q(x) k(y \mid x)<q(y) k(x \mid y)$, the situation is reversed: we want $\alpha(y \mid x)=1$, and $\alpha(x \mid y)$ should suppress $y \rightarrow x$ transitions.

We can summarize the two cases as:

$$
\alpha(y \mid x)= \begin{cases}\frac{q(y) k(x \mid y)}{q(x) k(y \mid x)} & \text { if } q(y) k(x \mid y)<q(x) k(y \mid x) \\ 1 & \text { otherwise }\end{cases}
$$

or equivalently:

$$
\alpha(y \mid x)=\min \left[\frac{q(y) k(x \mid y)}{q(x) k(y \mid x)}, 1\right]
$$

Metropolis-Hastings algorithm

Given a target quasi-distribution $q(x)$ (it need not be normalized):

1. Specify a proposal distribution $k(y \mid x)$ (make sure it is irreducible and aperiodic).
2. Choose a starting point x; set $t=0$ and $S_{t}=x$
3. Increment t
4. Propose a new state $y \sim k(y \mid x)$
5. If $q(x) k(y \mid x)<q(y) k(x \mid y)$, set $S_{t}=y$; goto (3)
6. Draw a uniform random number u
7. If $u<\frac{q(y) k(x \mid y)}{q(x) k(y \mid x)}$, set $S_{t}=y$; else set $S_{t}=x$; goto (3)
