
Posterior Sampling & MCMC via
Metropolis-Hastings

1 Posterior sampling

2 Accept-reject algorithm

3 Markov chains

4 Metropolis-Hastings algorithm

Notes for the Astrostatistics Summer School, India, July 2010
Tom Loredo <loredo@astro.cornell.edu>

1 / 20

Posterior Sampling & MCMC

1 Posterior sampling

2 Accept-reject algorithm

3 Markov chains

4 Metropolis-Hastings algorithm

2 / 20

Posterior Sampling

Recall the Monte Carlo algorithm for finding credible regions:

1. Create a RNG that can sample P from p(P|Dobs)
2. Draw N samples; record Pi and qi = π(Pi)L(µi)
3. Sort the samples by the qi values
4. An HPD region of probability P is the P region spanned

by the 100P% of samples with highest qi

A

T

!

This approach is called posterior sampling.

Building a posterior sampler (step 1) is hard!

3 / 20

Posterior Sampling & MCMC

1 Posterior sampling

2 Accept-reject algorithm

3 Markov chains

4 Metropolis-Hastings algorithm

4 / 20

Basic Accept-Reject Algorithm
Goal: Given q(P) ≡ π(P)L(P), build a RNG that draws samples
from the probability density function (pdf)

f (P) =
q(P)

Z
with Z =

∫

dP q(P)

The probability for a region under the pdf is the area (volume)
under the curve (surface).

→ Sample points uniformly in volume under q; their P values will
be draws from f (P).

0 5 10 15 20
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e
n
si
ty The fraction of samples with P

(“x” in the fig) in a bin of size δP

is the fractional area of the bin.

5 / 20

How can we generate points uniformly under the pdf?

Suppose q(P) has compact support: it is nonzero in a finite
contiguous region of volume V .

Generate candidate points uniformly in a rectangle enclosing q(P).

Keep the points that end up under q.

0 5 10 15 20
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e
n
si
ty

6 / 20

Basic accept-reject algorithm

1. Find an upper bound Q for q(P)
2. Draw a candidate parameter value P ′ from the uniform

distribution in V
3. Draw a uniform random number, u
4. If the ordinate uQ < q(P ′), record P ′ as a sample
5. Goto 2, repeating as necessary to get the desired number

of samples.

Efficiency = ratio of areas (volumes), Z/(QV).

Two issues

• Increasing efficiency

• Handling distributions with infinite support

7 / 20

Envelope Functions
Suppose there is a pdf h(P) that we know how to sample from and
that roughly resembles q(P):

• Multiply h by a constant C so Ch(P) ≥ q(P)

• Points with coordinates P ′ ∼ h and ordinate uCh(P ′) will be
distributed uniformly under Ch(P)

• Replace the hyperrectangle in the basic algorithm with the
region under Ch(P)

0 5 10 15 20
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e
n
si
ty

8 / 20

Accept-Reject Algorithm

1. Choose an envelope function h(P) and a constant C so
it bounds q

2. Draw a candidate parameter value P ′ ∼ h
3. Draw a uniform random number, u
4. If q(P ′) < Ch(P ′), record P ′ as a sample
5. Goto 2, repeating as necessary to get the desired number

of samples.

Efficiency = ratio of volumes, Z/C .

In problems of realistic complexity, the efficiency is intolerably low
for parameter spaces of more than a few dimensions.

Key idea: Propose candidates that may be accepted or rejected

9 / 20

Posterior Sampling & MCMC

1 Posterior sampling

2 Accept-reject algorithm

3 Markov chains

4 Metropolis-Hastings algorithm

10 / 20

Markov Chain Monte Carlo

Accept/Reject aims to produce independent samples—each new P
is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let’s introduce dependence:
Choose new P points in a way that

• Tends to move toward regions with higher probability than
current

• Tends to avoid lower probability regions

The simplest possibility is a Markov chain:

p(next location|current and previous locations)

= p(next location|current location)

A Markov chain “has no memory.”

11 / 20

Equilibrium Distributions
Start with some (possibly random) point P0; produce a sequence
of points labeled in order by a “time” index, Pt .

Ideally we’d like to have p(Pt) = q(Pt)/Z for each t. Can we do
this with a Markov chain?

To simplify discussion, discretize parameter space into a countable
number of states, which we’ll label by x or y (i.e., cell numbers). If
Pt is in cell x , we say state St = x .

Focus on homogeneous Markov chains:

p(St = y |St−1 = x) = T (y |x), transition probability (matrix)

Note that T (y |x) is a probability distribution over y , and does not
depend on t.

Aside: There is no standard notation for any of this—including the order
of arguments in T !

12 / 20

What is the probability for being in state y at time t?

p(St = y) = p(stay at y) + p(move to y) − p(move from y)

= p(St−1 = y)

+
∑

x 6=y

p(St−1 = x)T (y |x) −
∑

x 6=y

p(St−1 = y)T (x |y)

= p(St−1 = y)

+
∑

x 6=y

[p(St−1 = x)T (y |x) − p(St−1 = y)T (x |y)]

If the sum vanishes, then there is an equilibrium distribution:

p(St = y) = p(St−1 = y) ≡ peq(y)

If we start in a state drawn from peq, every subsequent sample will
be a (dependent) draw from peq.

13 / 20

Reversibility/Detailed Ballance

A sufficient (but not necessary!) condition for there to be an
equilibrium distribution is for each term of the sum to vanish:

peq(x)T (y |x) = peq(y)T (x |y) or

T (y |x)

T (x |y)
=

peq(y)

peq(x)

This is called the detailed balance or reversibility condition.

If we set peq = q/Z , and we build a reversible transition
distribution for this choice, then the equilibrim distribution will be
the posterior distribution.

14 / 20

Convergence

Problem: What about p(S0 = x)?

If we start the chain with a draw from the posterior, every
subsequent draw will be from the posterior. But we can’t do this!

Convergence

If the chain produced by T (y |x) satisifies two conditions:

• It is irreducible: From any x , we can reach any y with
finite probability in a finite # of steps

• It is aperiodic: The transitions never get trapped in cycles

then p(St = s) → peq(x).

Early samples will show evidence of whatever procedure was
used to generate the starting point → discard samples in an
initial “burn-in” period.

15 / 20

Posterior Sampling & MCMC

1 Posterior sampling

2 Accept-reject algorithm

3 Markov chains

4 Metropolis-Hastings algorithm

16 / 20

Designing Reversible Transitions
Set peq(x) = q(x)/Z ; how can we build a T (y |x) with this as its
EQ dist’n?

Steal an idea from accept/reject: Start with a proposal or
candidate distribution, k(y |x). Devise an accept/reject criterion
that leads to a reversible T (y |x) for q/Z .

Using any k(y |x) will not guarantee reversibility. E.g., from a
particular x , the transition rate to a particular y may be too large:

q(x)k(y |x) > q(y)k(x |y) Note: Z dropped out!

When this is true, we should use rejections to reduce the rate to y .

Acceptance probability : Accept y with probability α(y |x); reject it
with probability 1 − α(y |x) and stay at x :

T (y |x) = k(y |x)α(y |x) + [1 − α(y |x)]δy ,x

17 / 20

The detailed balance condition is a requirement for y 6= x
transitions, for which δy ,x = 0; it gives a condition for α:

q(x)k(y |x)α(y |x) = q(y)k(x |y)α(x |y)

Suppose q(x)k(y |x) > q(y)k(x |y); then we want to suppress
x → y transitions, but we want to maximize y → x transitions. So
we should set α(x |y) = 1, and the condition becomes:

α(y |x) =
q(y)k(x |y)

q(x)k(y |x)

If instead q(x)k(y |x) < q(y)k(x |y), the situation is reversed: we
want α(y |x) = 1, and α(x |y) should suppress y → x transitions.

18 / 20

We can summarize the two cases as:

α(y |x) =

{

q(y)k(x |y)
q(x)k(y |x) if q(y)k(x |y) < q(x)k(y |x)

1 otherwise

or equivalently:

α(y |x) = min

[

q(y)k(x |y)

q(x)k(y |x)
, 1

]

19 / 20

Metropolis-Hastings algorithm

Given a target quasi-distribution q(x) (it need not be normalized):

1. Specify a proposal distribution k(y |x) (make sure it is
irreducible and aperiodic).

2. Choose a starting point x ; set t = 0 and St = x
3. Increment t
4. Propose a new state y ∼ k(y |x)
5. If q(x)k(y |x) < q(y)k(x |y), set St = y ; goto (3)
6. Draw a uniform random number u
7. If u < q(y)k(x|y)

q(x)k(y |x) , set St = y ; else set St = x ; goto (3)

20 / 20

	Posterior sampling
	Accept-reject algorithm
	Markov chains
	Metropolis-Hastings algorithm

