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Scientific Method

Science is more than a body of knowledge; it is a way of thinking.
The method of science, as stodgy and grumpy as it may seem,

is far more important than the findings of science.
—Carl Sagan

Scientists argue!

Argument ≡ Collection of statements comprising an act of
reasoning from premises to a conclusion

A key goal of science: Explain or predict quantitative
measurements (data!)

Data analysis: Constructing and appraising arguments that reason
from data to interesting scientific conclusions (explanations,
predictions)
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The Role of Data

Data do not speak for themselves!

We don’t just tabulate data, we analyze data.

We gather data so they may speak for or against existing
hypotheses, and guide the formation of new hypotheses.

A key role of data in science is to be among the premises in
scientific arguments.
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Data Analysis
Building & Appraising Arguments Using Data

Statistical inference is but one of several interacting modes of
analyzing data.
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Bayesian Statistical Inference

• A different approach to all statistical inference problems (i.e.,
not just another method in the list: BLUE, maximum
likelihood, χ2 testing, ANOVA, survival analysis . . . )

• Foundation: Use probability theory to quantify the strength of
arguments (i.e., a more abstract view than restricting PT to
describe variability in repeated “random” experiments)

• Focuses on deriving consequences of modeling assumptions
rather than devising and calibrating procedures
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Frequentist vs. Bayesian Statements

“I find conclusion C based on data Dobs . . . ”

Frequentist assessment
“It was found with a procedure that’s right 95% of the time
over the set {Dhyp} that includes Dobs.”
Probabilities are properties of procedures, not of particular
results.

Bayesian assessment
“The strength of the chain of reasoning from Dobs to C is
0.95, on a scale where 1= certainty.”
Probabilities are properties of specific results.
Long-run performance must be separately evaluated (and is
typically good by frequentist criteria).
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Estimating Parameters Via χ2

Collect data Dobs = {di , σi}, fit with 2-parameter model via χ2:

χ2(A,T ) =
N∑

i=1

[di − fi (A,T )]2

σ2
i

Two classes of variables

• Data (samples) di — Known, define N-D sample space
• Parameters θ = (A,T ) — Unknown, define 2-D parameter space

A

T

“Best fit” θ̂ = arg minθ χ2(θ)

Report uncertainties via χ2 contours, but how do we quantify
uncertainty vs. contour level?
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Frequentist: Parametric Bootstrap
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Parametric Bootstrap Algorithm

Monte Carlo algorithm for finding approximate confidence regions:

1. Pretend true params θ∗ = θ̂(Dobs) (“plug-in approx’n”)
2. Repeat N times:

1. Simulate a dataset from p(Dsim|θ∗)
→ χ2

Dsim
(θ)

2. Find min χ2 estimate θ̂(Dsim)
3. Calculate ∆χ2 = χ2(θ∗) − χ2(θ̂Dsim

)
4. Histogram the ∆χ2 values to find coverage vs. ∆χ2

(fraction of sim’ns with smaller ∆χ2)

Result is approximate even for N → ∞ because θ∗ %= θ̂(Dobs).
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Bayesian: Posterior Sampling Via MCMC
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Posterior Sampling Algorithm

Monte Carlo algorithm for finding credible regions:

1. Create a RNG that can sample θ from
p(θ|Dobs) ∝ e−χ

2(θ)/2

2. Draw N samples; record θi and qi = χ2(θi )
3. Sort the samples by the qi values
4. A credible region of probability P is the θ region spanned

by the 100P% of samples with highest qi

Note that no dataset other than Dobs is ever considered.

The only approximation is the use of Monte Carlo.

These very different procedures produce the same regions for linear
models with Gaussian error distributions.

These procedures produce different regions in general.
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Logic—Some Essentials
“Logic can be defined as the analysis and appraisal of arguments”

—Gensler, Intro to Logic

Build arguments with propositions and logical
operators/connectives:

• Propositions: Statements that may be true or false

P : Universe can be modeled with ΛCDM

A : Ωtot ∈ [0.9, 1.1]

B : ΩΛ is not 0

B : “not B,” i.e.,ΩΛ = 0

• Connectives:

A ∧ B : A andB are both true

A ∨ B : A orB is true, or both are
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Arguments

Argument: Assertion that an hypothesized conclusion, H, follows
from premises, P = {A,B, C , . . .} (take “,” = “and”)

Notation:

H|P : Premises P imply H

H may be deduced from P
H follows from P
H is true given that P is true

Arguments are (compound) propositions.

Central role of arguments → special terminology for true/false:

• A true argument is valid

• A false argument is invalid or fallacious
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Valid vs. Sound Arguments

Content vs. form

• An argument is factually correct iff all of its premises are true
(it has “good content”).

• An argument is valid iff its conclusion follows from its
premises (it has “good form”).

• An argument is sound iff it is both factually correct and valid
(it has good form and content).

Deductive logic and probability theory address validity.

We want to make sound arguments. There is no formal approach
for addressing factual correctness → there is always a subjective
element to an argument.
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Factual Correctness

Passing the buck
Although logic can teach us something about validity and
invalidity, it can teach us very little about factual correctness.
The question of the truth or falsity of individual statements is
primarily the subject matter of the sciences.

— Hardegree, Symbolic Logic

An open issue
To test the truth or falsehood of premisses is the task of
science. . . . But as a matter of fact we are interested in, and
must often depend upon, the correctness of arguments whose
premisses are not known to be true.

— Copi, Introduction to Logic
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Premises

• Facts — Things known to be true, e.g. observed data

• “Obvious” assumptions — Axioms, postulates, e.g., Euclid’s
first 4 postulates (line segment b/t 2 points; congruency of
right angles . . . )

• “Reasonable” or “working” assumptions — E.g., Euclid’s fifth
postulate (parallel lines)

• Desperate presumption!

• Conclusions from other arguments

Premises define a fixed context in which arguments may be
assessed.

Premises are considered “given”—if only for the sake of the
argument!
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Deductive and Inductive Inference

Deduction—Syllogism as prototype
Premise 1: A implies H
Premise 2: A is true
Deduction: ∴ H is true
H|P is valid

Induction—Analogy as prototype
Premise 1: A,B, C , D, E all share properties x , y , z
Premise 2: F has properties x , y
Induction: F has property z
“F has z”|P is not strictly valid, but may still be rational
(likely, plausible, probable); some such arguments are stronger
than others

Boolean algebra (and/or/not over {0, 1}) quantifies deduction.

Bayesian probability theory (and/or/not over [0, 1]) generalizes this
to quantify the strength of inductive arguments.
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Deductive Logic

Assess arguments by decomposing them into parts via connectives,
and assessing the parts

Validity of A ∧ B|P

A|P A|P
B|P valid invalid

B|P invalid invalid

Validity of A ∨ B|P

A|P A|P
B|P valid valid

B|P valid invalid
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Representing Deduction With {0, 1} Algebra

V (H|P) ≡ Validity of argument H|P:

V = 0 → Argument is invalid

= 1 → Argument is valid

Then deduction can be reduced to integer multiplication and
addition over {0, 1} (as in a computer):

V (A ∧ B|P) = V (A|P)V (B|P)

V (A ∨ B|P) = V (A|P) + V (B|P) − V (A ∧ B|P)

V (A|P) = 1 − V (A|P)
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Representing Induction With [0, 1] Algebra

P(H|P) ≡ strength of argument H|P

P = 0 → Argument is invalid; premises imply H

= 1 → Argument is valid

∈ (0, 1) → Degree of deducibility

Mathematical model for induction

‘AND’ (product rule): P(A ∧ B|P) = P(A|P)P(B|A ∧ P)

= P(B|P)P(A|B ∧ P)

‘OR’ (sum rule): P(A ∨ B|P) = P(A|P) + P(B|P)
−P(A ∧ B|P)

‘NOT’: P(A|P) = 1 − P(A|P)
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The Product Rule

We simply promoted the V algebra to real numbers; the only thing
changed is part of the product rule:

V (A ∧ B|P) = V (A|P)V (B|P)

P(A ∧ B|P) = P(A|P)P(B|A,P)

Suppose A implies B (i.e., B|A,P is valid). Then we don’t expect
P(A ∧ B|P) to differ from P(A|P).

In particular, P(A ∧ A|P) must equal P(A|P)!

Such qualitative reasoning satisfied early probabilists that the sum
and product rules were worth considering as axioms for a theory of
quantified induction.

25 / 59

Firm Foundations

Today many different lines of argument derive
induction-as-probability from various simple and appealing
requirements:

• Consistency with logic + internal consistency (Cox; Jaynes)

• “Coherence”/optimal betting (Ramsey; DeFinetti; Wald; Savage)

• Algorithmic information theory (Rissanen; Wallace & Freeman)

• Optimal information processing (Zellner)

• Avoiding problems with frequentist methods:

• Avoiding recognizable subsets (Cornfield)

• Avoiding stopping rule problems → likelihood principle
(Birnbaum; Berger & Wolpert)
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Interpreting Bayesian Probabilities

If we like there is no harm in saying that a probability expresses a
degree of reasonable belief. . . . ‘Degree of confirmation’ has been
used by Carnap, and possibly avoids some confusion. But whatever
verbal expression we use to try to convey the primitive idea, this
expression cannot amount to a definition. Essentially the notion
can only be described by reference to instances where it is used. It
is intended to express a kind of relation between data and
consequence that habitually arises in science and in everyday life,
and the reader should be able to recognize the relation from
examples of the circumstances when it arises.

— Sir Harold Jeffreys, Scientific Inference
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More On Interpretation

Physics uses words drawn from ordinary language—mass, weight,
momentum, force, temperature, heat, etc.—but their technical meaning
is more abstract than their colloquial meaning. We can map between the
colloquial and abstract meanings associated with specific values by using
specific instances as “calibrators.”

A Thermal Analogy

Intuitive notion Quantification Calibration

Hot, cold Temperature, T Cold as ice = 273K
Boiling hot = 373K

uncertainty Probability, P Certainty = 0, 1

p = 1/36:
plausible as “snake’s eyes”

p = 1/1024:
plausible as 10 heads
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A Bit More On Interpretation

Bayesian

Probability quantifies uncertainty in an inductive inference. p(x)
describes how probability is distributed over the possible values x
might have taken in the single case before us:

P

x

p is distributed

x has a single,
uncertain value

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies in a
sequence of trials. p(x) describes variability, how the values of x
would be distributed among infinitely many trials:

x is distributed

x

P
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Arguments Relating

Hypotheses, Data, and Models

We seek to appraise scientific hypotheses in light of observed data
and modeling assumptions.

Consider the data and modeling assumptions to be the premises of
an argument with each of various hypotheses, Hi , as conclusions:
Hi |Dobs, I . (I = “background information,” everything deemed
relevant besides the observed data)

P(Hi |Dobs, I ) measures the degree to which (Dobs, I ) allow one to
deduce Hi . It provides an ordering among arguments for various Hi

that share common premises.

Probability theory tells us how to analyze and appraise the
argument, i.e., how to calculate P(Hi |Dobs, I ) from simpler,
hopefully more accessible probabilities.
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The Bayesian Recipe

Assess hypotheses by calculating their probabilities p(Hi | . . .)
conditional on known and/or presumed information using the
rules of probability theory.

Probability Theory Axioms:

‘OR’ (sum rule): P(H1 ∨ H2|I ) = P(H1|I ) + P(H2|I )
−P(H1,H2|I )

‘AND’ (product rule): P(H1,D|I ) = P(H1|I )P(D|H1, I )

= P(D|I )P(H1|D, I )

‘NOT’: P(H1|I ) = 1 − P(H1|I )
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Three Important Theorems

Bayes’s Theorem (BT)
Consider P(Hi , Dobs|I ) using the product rule:

P(Hi , Dobs|I ) = P(Hi |I )P(Dobs|Hi , I )

= P(Dobs|I )P(Hi |Dobs, I )

Solve for the posterior probability:

P(Hi |Dobs, I ) = P(Hi |I )
P(Dobs|Hi , I )

P(Dobs|I )

Theorem holds for any propositions, but for hypotheses &
data the factors have names:

posterior ∝ prior × likelihood

norm. const. P(Dobs|I ) = prior predictive
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Law of Total Probability (LTP)
Consider exclusive, exhaustive {Bi} (I asserts one of them
must be true),

∑

i

P(A,Bi |I ) =
∑

i

P(Bi |A, I )P(A|I ) = P(A|I )

=
∑

i

P(Bi |I )P(A|Bi , I )

If we do not see how to get P(A|I ) directly, we can find a set
{Bi} and use it as a “basis”—extend the conversation:

P(A|I ) =
∑

i

P(Bi |I )P(A|Bi , I )

If our problem already has Bi in it, we can use LTP to get
P(A|I ) from the joint probabilities—marginalization:

P(A|I ) =
∑

i

P(A,Bi |I )
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Example: Take A = Dobs, Bi = Hi ; then

P(Dobs|I ) =
∑

i

P(Dobs,Hi |I )

=
∑

i

P(Hi |I )P(Dobs|Hi , I )

prior predictive for Dobs = Average likelihood for Hi

(a.k.a. marginal likelihood)

Normalization
For exclusive, exhaustive Hi ,

∑

i

P(Hi | · · · ) = 1
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Well-Posed Problems
The rules express desired probabilities in terms of other
probabilities.

To get a numerical value out, at some point we have to put
numerical values in.

Direct probabilities are probabilities with numerical values
determined directly by premises (via modeling assumptions,
symmetry arguments, previous calculations, desperate
presumption . . . ).

An inference problem is well posed only if all the needed
probabilities are assignable based on the premises. We may need to
add new assumptions as we see what needs to be assigned. We
may not be entirely comfortable with what we need to assume!
(Remember Euclid’s fifth postulate!)

Should explore how results depend on uncomfortable assumptions
(“robustness”).
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Visualizing Bayesian Inference
Simplest case: Binary classification

• 2 hypotheses: {H, C}
• 2 possible data values: {−, +}

Concrete example: You test positive (+) for a medical condition.
Do you have the condition (C ) or not (H, “healthy”)?

• Prior: Prevalence of the condition in your population is 0.1%

• Likelihood:

• Test is 90% accurate if you have the condition:
P(+|C , I ) = 0.9 (“sensitivity”)

• Test is 95% accurate if you are healthy:
P(−|H, I ) = 0.95 (“specificity”)

Numbers roughly correspond to breast cancer in asymptomatic women
aged 40–50, and mammography screening
[Gigerenzer, Calculated Risks (2002)]
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Probability Lattice

P (Hi|I)

P (Hi, D|I) =
P (Hi|I)P (D|Hi, I)

P (D|I) =
∑

i

P (Hi, D|I)

P (C|+, I) =
0.009

0.0585
≈ 0.15

P (H1 ∨ H2|I)

38 / 59

Page 279



Count Lattice
Integers are easier than reals!
Create a large ensemble of cases so ratios of counts approximate the probabilities.

P (C|+, I) =
9

59
≈ 0.15

Of the 59 cases with positive test results, only 9 have the condition. The prevalence is
so low that when there is a positive result, it’s more likely to have been a mistake than
accurate.
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Recap
Bayesian inference is more than BT

Bayesian inference quantifies uncertainty by reporting
probabilities for things we are uncertain of, given specified
premises.

It uses all of probability theory, not just (or even primarily)
Bayes’s theorem.

The Rules in Plain English

• Ground rule: Specify premises that include everything relevant
that you know or are willing to presume to be true (for the
sake of the argument!).

• BT: To adjust your appraisal when new evidence becomes
available, add the evidence to your initial premises.

• LTP: If the premises allow multiple arguments for a
hypothesis, its appraisal must account for all of them.
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Inference With Parametric Models

Models Mi (i = 1 to N), each with parameters θi , each imply a
sampling dist’n (conditional predictive dist’n for possible data):

p(D|θi , Mi )

The θi dependence when we fix attention on the observed data is
the likelihood function:

Li (θi ) ≡ p(Dobs|θi , Mi )

We may be uncertain about i (model uncertainty) or θi (parameter
uncertainty).

Henceforth we will only consider the actually observed data, so we drop
the cumbersome subscript: D = Dobs.
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Three Classes of Problems

Parameter Estimation
Premise = choice of model (pick specific i)
→ What can we say about θi?

Model Assessment

• Model comparison: Premise = {Mi}
→ What can we say about i?

• Model adequacy/GoF: Premise = M1∨ “all” alternatives
→ Is M1 adequate?

Model Averaging
Models share some common params: θi = {φ, ηi}
→ What can we say about φ w/o committing to one model?
(Examples: systematic error, prediction)
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Parameter Estimation

Problem statement
I = Model M with parameters θ (+ any add’l info)

Hi = statements about θ; e.g. “θ ∈ [2.5, 3.5],” or “θ > 0”

Probability for any such statement can be found using a
probability density function (PDF) for θ:

P(θ ∈ [θ, θ + dθ]| · · · ) = f (θ)dθ

= p(θ| · · · )dθ

Posterior probability density

p(θ|D, M) =
p(θ|M) L(θ)∫
dθ p(θ|M) L(θ)
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Summaries of posterior

• “Best fit” values:
• Mode, θ̂, maximizes p(θ|D,M)
• Posterior mean, 〈θ〉 =

∫
dθ θ p(θ|D,M)

• Uncertainties:
• Credible region ∆ of probability C :

C = P(θ ∈ ∆|D,M) =
∫
∆ dθ p(θ|D,M)

Highest Posterior Density (HPD) region has p(θ|D,M) higher
inside than outside

• Posterior standard deviation, variance, covariances

• Marginal distributions
• Interesting parameters φ, nuisance parameters η
• Marginal dist’n for φ: p(φ|D,M) =

∫
dη p(φ, η|D,M)
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Nuisance Parameters and Marginalization

To model most data, we need to introduce parameters besides
those of ultimate interest: nuisance parameters.

Example
We have data from measuring a rate r = s + b that is a sum
of an interesting signal s and a background b.

We have additional data just about b.

What do the data tell us about s?
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Marginal posterior distribution

p(s|D, M) =

∫
db p(s, b|D, M)

∝ p(s|M)

∫
db p(b|s)L(s, b)

≡ p(s|M)Lm(s)

with Lm(s) the marginal likelihood for s. For broad prior,

Lm(s) ≈ p(b̂s |s) L(s, b̂s) δbs

best b given s

b uncertainty given s

Profile likelihood Lp(s) ≡ L(s, b̂s) gets weighted by a parameter
space volume factor

E.g., Gaussians: ŝ = r̂ − b̂, σ2
s = σ2

r + σ2
b

Background subtraction is a special case of background marginalization.
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Marginalization vs. Profiling
Marginal distribution for signal s, eliminating backgrond b:

p(s|D, M) ∝ p(s|M)Lm(s)

with Lm(s) the marginal likelihood for s,

Lm(s) ≡
∫

db p(b|s)L(s, b)

For insight: Suppose for a fixed s, we can accurately estimate b
with max likelihood b̂s , with small uncertainty δbs .

Lm(s) ≡
∫

db p(b|s)L(s, b)

≈ p(b̂s |s) L(s, b̂s) δbs

best b given s

b uncertainty given s

Profile likelihood Lp(s) ≡ L(s, b̂s) gets weighted by a parameter
space volume factor
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Bivariate normals: Lm ∝ Lp

s

b
b̂s

b

L
(s

,b
)/
L

(s
,b̂

s
)

δbs is const. vs. s

⇒ Lm ∝ Lp
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Flared/skewed/bannana-shaped: Lm and Lp differ

Lp(s) Lm(s)

s

b

b̂s

s

b

b̂s

Lp(s) Lm(s)

General result: For a linear (in params) model sampled with
Gaussian noise, and flat priors, Lm ∝ Lp.
Otherwise, they will likely differ.

In measurement error problems (future lecture!) the difference can
be dramatic.
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Many Roles for Marginalization
Eliminate nuisance parameters

p(φ|D,M) =

∫
dη p(φ, η|D,M)

Propagate uncertainty

Model has parameters θ; what can we infer about F = f (θ)?

p(F |D,M) =

∫
dθ p(F , θ|D,M) =

∫
dθ p(θ|D,M) p(F |θ,M)

=

∫
dθ p(θ|D,M) δ[F − f (θ)] [single-valued case]

Prediction

Given a model with parameters θ and present data D, predict future
data D ′ (e.g., for experimental design):

p(D ′|D,M) =

∫
dθ p(D ′, θ|D,M) =

∫
dθ p(θ|D,M) p(D ′|θ,M)

Model comparison. . .
51 / 59

Model Comparison
Problem statement

I = (M1 ∨ M2 ∨ . . .) — Specify a set of models.
Hi = Mi — Hypothesis chooses a model.

Posterior probability for a model

p(Mi |D, I ) = p(Mi |I )
p(D|Mi , I )

p(D|I )
∝ p(Mi |I )L(Mi )

But L(Mi ) = p(D|Mi ) =
∫

dθi p(θi |Mi )p(D|θi , Mi ).

Likelihood for model = Average likelihood for its parameters

L(Mi ) = 〈L(θi )〉

Varied terminology: Prior predictive = Average likelihood = Global
likelihood = Marginal likelihood = (Weight of) Evidence for model
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Odds and Bayes factors

A ratio of probabilities for two propositions using the same
premises is called the odds favoring one over the other:

Oij ≡
p(Mi |D, I )

p(Mj |D, I )

=
p(Mi |I )
p(Mj |I )

×
p(D|Mi , I )

p(D|Mj , I )

The data-dependent part is called the Bayes factor:

Bij ≡
p(D|Mi , I )

p(D|Mj , I )

It is a likelihood ratio; the BF terminology is usually reserved for
cases when the likelihoods are marginal/average likelihoods.
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An Automatic Occam’s Razor

Predictive probabilities can favor simpler models

p(D|Mi ) =

∫
dθi p(θi |M) L(θi )

Dobs
D

P(D|H)

Complicated H

Simple H
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The Occam Factor
p,L

θ
Δθ

δθPrior

Likelihood

p(D|Mi ) =

∫
dθi p(θi |M) L(θi ) ≈ p(θ̂i |M)L(θ̂i )δθi

≈ L(θ̂i )
δθi

∆θi

= Maximum Likelihood × Occam Factor

Models with more parameters often make the data more
probable — for the best fit

Occam factor penalizes models for “wasted” volume of
parameter space

Quantifies intuition that models shouldn’t require fine-tuning
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Model Averaging

Problem statement
I = (M1 ∨ M2 ∨ . . .) — Specify a set of models
Models all share a set of “interesting” parameters, φ

Each has different set of nuisance parameters ηi (or different
prior info about them)
Hi = statements about φ

Model averaging
Calculate posterior PDF for φ:

p(φ|D, I ) =
∑

i

p(Mi |D, I ) p(φ|D, Mi )

∝
∑

i

L(Mi )

∫
dηi p(φ, ηi |D, Mi )

The model choice is a (discrete) nuisance parameter here.
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Theme: Parameter Space Volume

Bayesian calculations sum/integrate over parameter/hypothesis
space!

(Frequentist calculations average over sample space & typically optimize

over parameter space.)

• Marginalization weights the profile likelihood by a volume
factor for the nuisance parameters.

• Model likelihoods have Occam factors resulting from
parameter space volume factors.

Many virtues of Bayesian methods can be attributed to this
accounting for the “size” of parameter space. This idea does not
arise naturally in frequentist statistics (but it can be added “by
hand”).
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Roles of the Prior

Prior has two roles

• Incorporate any relevant prior information

• Convert likelihood from “intensity” to “measure”

→ Accounts for size of hypothesis space

Physical analogy

Heat: Q =

∫
dV cv (r)T (r)

Probability: P ∝
∫

dθ p(θ|I )L(θ)

Maximum likelihood focuses on the “hottest” hypotheses.
Bayes focuses on the hypotheses with the most “heat.”
A high-T region may contain little heat if its cv is low or if
its volume is small.
A high-L region may contain little probability if its prior is low or if
its volume is small.
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Recap of Key Ideas

• Probability as generalized logic for appraising arguments

• Three theorems: BT, LTP, Normalization

• Calculations characterized by parameter space integrals
• Credible regions, posterior expectations
• Marginalization over nuisance parameters
• Occam’s razor via marginal likelihoods
• Do not integrate/average over hypothetical data
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