Modeling the Deep Impact ejecta plume

R. Vasundhara

Indian Institute of Astrophysics, Bangalore 560034 India

> In - house meeting April 12-13 2007|

The Deep impact mission by NASA

Heliocentric distance

$=1.5 \mathrm{AU}$

Geocentric distance

$=0.89 \mathrm{AU}$

Image of comet Tempel 1 by the Impactor Targeting System Camera

The impact sequence imaged by the High Resolution Instrument Camera aboard the DI Flyby Spacecraft

International Campaign

- Observations were attempted from IAO and VBO during July 01 - 08 July, 2005
- Imaging in R band
- Collaborators: U.S. Kamath, G.Maheswar,
S. Muneer, S.K. Pandey, T.P. Prabhu, D.K.

Sahu, R. Vasundhara
Preliminary results in Meech et al. 2005
Science 310, 265-269

The impact plume was imaged successfully at the

Field :
$31^{\prime \prime}$ x $\quad 102 \mathrm{~cm}$ telescope at VBO through R filter, on 03 \& 04 July 31"

Original Image of 04 July

4July/
1/p coma

03 July

04 July

- scaled

03 July

Assumptions in the model :

1. Instantaneous ejection of the plume material
2. The grains were ejected with a size dependent initial velocity
3. The trajectory of the grains - shape of the plume was modified by solar radiation pressure over the next few days
4. The ejecta cone (curtain) is of finite thickness

Parameters modelled: Cone width, thickness, initial grain
velocity, grain size distribution

- Grain size distribution:
$\mathrm{n}(\mathrm{s}) \mathrm{ds}=[(1-\mathrm{so} / \mathrm{s}) * * \mathrm{M}] *(\mathrm{so} / \mathrm{s}) * * \mathrm{~N}$
(Hanner, 1985, Adv. Space. Res. 4(9), 189)
so $=$ minimum grain size
Intensity of light scattered by the grains $=\Sigma \mathrm{I}(\mathrm{s}) \mathrm{n}(\mathrm{s}) \mathrm{ds}$
where,
$\mathrm{I}(\mathrm{s}, \theta, \lambda)=\mathrm{I}_{\mathrm{o}}(\lambda) \cdot \lambda^{* * 2}(\mathrm{I} \|+\mathrm{I} \perp) / 8 \cdot \pi \cdot \mathrm{r}^{* *} 2 \cdot \Delta^{* * 2}$
Further possibilities (not used in the present work) :
Polarization : $\mathrm{P}(\mathrm{s}, \theta, \lambda)=(\mathrm{I} \|-\mathrm{I} \perp) /(\mathrm{I} \|+\mathrm{I} \perp)$
Normalized reflectivity gradient (Jewitt \& Meech, 1986) :
$S^{\prime}(\lambda 1, \lambda 2)=(\mathrm{dS} / \mathrm{d} \lambda) \times 1000 /$ Smean

4 July, 2005 Observations from the VBO

July 4 - July 3(S)

Simulated image

Field : 31" X 31 "

xnTH əム!̣eโəy

Evolution of the ejecta plume

Collaboration with Stephen Lowry and Alan Fitzsimmons, Queen's University, Belfast.

The Data:
Images obtained at the 2.5 m Isaac Newton Telescope at La
Palma
at the prime ($\mathrm{f} / 3$) focus through Sloan r filter
Dates: 04 July - 07 July

Observed image

Simulated image

Impact time:
05:52:02 UT

04 July
22:08:35 UT

Results:

Grain velocities, Radiation pressure parameter and size distribution used in the fit

Results:

Adjusted parameters :
fits:

- Opening half angle of the ejecta cone
-Thickness of the cone (Gaussian)
- velocity range
-Hour angle of the earth as seen by the
impact location at the time of impact
-Cometo-centric declination of the impact $-60^{\circ} \pm 10^{\circ}$ location using the derived pole location
- Zenith distance of the Earth with respect $71^{\circ} \pm 10^{\circ}$ to Impact location
-Position angle of the ejection cone axis $232^{\circ} \pm 10^{\circ}$
The fits were better if grain fragmentation is taken into account

Future Plans

The model has the potential to simulate colour and polarization maps, which can be exploited to investigate the grain properties.

Thank you

