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• Properties of 2-D MHD flows

• Formulation and Numerics

• Application to different situations with applications to Active Galactic Nuclei (AGN), Young
Stellar Objects (YSO), Cataclysmic Variables (CV), and X-ray Binaries (XRB)

• Working towards an Electrodynamical jet emerging from a disk dynamo
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Properties of steady axisymmetric flow

It is instructive to examine properties of MHD flow under perfect conductivity and axisymmetry in
some detail. The basic conservation laws were worked out by Chandrasekhar (1956) and redone by
Mestel (1961) and applied to rotating stars; an algebraic variation of the latter calculation follows.

• Under the conditions assumed here, we can write the induction equation as

∇× (v × B) = 0,

where by axisymmetry one can write the velocity and magnetic fields as

B = Bp + Bφ and v = vp + vφ,

in the usual cylindrical coordinate system; the toroidal velocity is vφ = ωr.

• Since the toroidal term, vp × Bp, cannot be a gradient of a potential, the poloidal part of the
flux freezing condition implies that

vp =
κ(ψ)

4πρ
Bp,

where κ is a constant on each magnetic surface, ψ.

• The toroidal part of the condition in combination with the above result, and the definitions of
the fields, yields

∇× (vφ × Bp + vp × Bφ) = 0

(Bp · ∇)vφ − (vφ · ∇)Bp − (Bp · ∇)(
κ(ψ)

4πρ
Bφ) + (Bφ · ∇)(

κ(ψ)

4πρ
Bp) = 0

(Bp · ∇ −
Br

r
)(
κ(ψ)

4πρ
Bφ − vφ) = 0
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(Bp · ∇)(
κ(ψ)

4πρr
Bφ − ω) = 0

κ(ψ)

4πρr
Bφ − ω = ωf(ψ),

where ωf(ψ) is the angular speed of the magnetic surface and is equal to the Keplerian value
at the footpoint; this result may be termed as the slippage condition, since it describes the slip
between the fluid particle and the surface.

• Next, we write the Euler’s equation for a magnetized, warm gas in a gravitational potential, ϕg,
as

∇
[

(v2
p + ω2r2)/2 + ϕg +H

]

=
1

4πρ
(∇× B) × B− (∇× v) × v,

where H is the specific enthalpy of the gas. The toroidal component of this equation, to which
the gradient term does not contribute, is

(Bp ×∇× Bφ)/4πρ = vp ×∇× vφ
∇× Bφ − κ(ψ)∇× vφ ∝ Bp

P̂ (rBφ) − κ(ψ)P̂ (r2ω) ∝ P̂ (ψ)

r2ω −
rBφ

κ(ψ)
= ℓ(ψ) ≡ ωf(ψ)r2

A(ψ),

and the integral of motion that results is the conservation of total angular momentum of the
system, ℓ(ψ), with its lever arm defined as the Alfvén radius, rA, containing both the gas and
field contributions.

• The flow energetics involving the Bernoulli and Grad-Shafranov equations (to be derived below)
were used to describe the plasma confinement in tokomaks (e.g. Shafranov 1965) and in the
vicinity of pulsars (e.g. Michel 1973). The Bernoulli equation (see for e.g., Chandrasekhar 1961)
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can be written as

1/2(v2
p + ω2r2) + ϕg +H + ωf(ωfr

2
A − ωr2) = E(ψ),

where the last term on the left is the work done by the field on the gas, while the specific energy,
E(ψ), is constant along streamlines. This may also be obtained by taking the component along
the magnetic surface. It can be seen from the Bernoulli equation that the terminal speed of the
gas will be

v∞(ψ) ∼ ωfrA,

if gravity is neglected at large distances from the source.

• Taking the gradient of ()

∇E = dψE∇ψ =
1

4πρ
(∇× B) × B − (∇× v) × v + ∇[ωf(ωfr

2
A − ωr2)],

we find it is perpendicular to the magnetic surface. The various terms of the RHS are

(∇× vφ) × vφ = P̂ (rω) × rωφ̂ = −ω∇(r2ω),

and

(∇× Bp) × Bp = Bp × (φ̂
Λψ

r
) = −

1

r2
(∇ψ)(Λψ),

• The following identities are useful:

P̂ = −
r̂

r
∂z +

ẑ

r
∂r and Λ = r∂r

1

r
∂r + ∂2

z ,

where the partial derivatives have been abbreviated. We point out that the r and z eigenfunctions
of Λ are

Λr = r J1(krr) and Λz = exp(kzz).
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Now,

[∇2P̂ ]z = (
1

r
∂rr∂r + ∂2

z )(
1

r
∂r) = (

1

r
∂r)(r∂r

1

r
∂r + ∂2

z ) = P̂zΛ,

for the z component and for the r component, we find that

[∇2P̂ ]r = (∂r
1

r
∂rr + ∂2

z)(−
1

r
∂z) = −∂z∂r

1

r
∂r −

1

r
∂z∂

2
z = P̂rΛ.

Similarly one can show

∇× P̂ = −φ̂
Λ

r
and P̂ (rΩ) = ∇× (Ωφ̂)

• The term

(∇× vp) × vp = (
κ

4πρ
)2[−

1

r2
∇ψΛψ] +

κ

4πρ
B2
p∇p(

κ

4πρ
)

=
∇ψ

4πρr2



−(
κ

4πρ
)2Λψ +

1

2
∇ψ · (

κ

4πρ
)2





=
∇ψ

4πr2
[
ρA
ρ2

Λψ +
1

2
∇(
ρA
ρ2

) · ∇ψ]

and the hoop stress

(∇× Bφ) × Bφ = P̂ (rBφ) × Bφφ̂ = −
1

2r2
∇(rBφ)

2.

The final term in () works out to be

∇(ω2
fr

2ρg/ρA) + ∇(ω2
fr

2
A),
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where ρA(ψ) ≡ κ2/4π is the density at the Alfvén point (a ring on the magnetic surface where
the poloidal velocity reaches Alfvén speed) and

g =
ωf − ω

ωf
=
r2
A − r2

r2

ρA
ρ− ρA

,

measures the angular velocity of the gas with respect to the fields; so that 0 < g < 1 as the
gas asymptotically loses its angular momentum to the fields. Using the above results it can be
shown that

ωfr
2
A − ωr2 = ωfr

2gρ/ρA.

• En route, it is found that

−
∇(rBφ)

2

8πr2
− gωf∇(ωr2) = gωf [−

gωfr
2

ρ2
A

∂ψρA −∇(ωr2
A)]∇ψ.

The last two terms along with the hoop stress provide the effects of collimation and hence, after
collecting all terms, the Trans-Field equation can written as

ρA − ρ

ρ
Λψ +

1

2
ρ∇ψ · ∇(

ρA
ρ2

) = 4πρr2[dψE + c(ψ, g; r)],

where, after some additional effort, the collimation term is found to be

c(ψ, g; r) = gωf [dψ(ωfr
2
A) + gωfr

2 ρ

2ρ2
A

dψρA] + (1 − g)ωfr
2dψ(ωf) − dψ(ω2

fr
2
A).

In summary,

• The Trans-Field equation also describes the decollimating effects of the centrifugal motion push-
ing against the magnetic surface. The full set of MHD wind equations (Bernoulli and the
Trans-Field) given above, are written in a general form including gravity, internal energy of
the gas, field energy, and rotation, and contain the two functions ψ(r, z) and ρ(r, z), and four
invariant functionals of ψ, namely, ρA, rA, ωf and E.
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• At this point, the various models diverge in philosophy and application; a broad classification
can be made into Electrodynamical and MHD models.

• In MHD models, inertial effects (terms that involve ρA) of the gas are on an equal footing with
the electromagnetic terms, while in Electrodynamical models, a relativistic force-free condition is
imposed in the magnetosphere of the accretion disk and the electromagnetic forces are assumed
to dominate over inertial forces such as gravity and thermal pressure.

Critical surfaces and Technical issues

Figure 1: Flow lines passing through critical points in a 1D system

• For cold MHD flows, where only gravity and centrifugal forces matter, the slow magnetosonic
point is reached when the effective gravity vanishes (which presumably occurs not far from the
disk surface) and the gas will be centrifugally accelerated beyond this point; the thermal pressure
merely determines the initial speed at the slow point and is irrelevant to the rest of the flow.
Subsequently, at the Alfvén point defined earlier, the poloidal Alfvén speed is reached.
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• The singularity at this Alfvén surface (a locus of the Alfvén points) can be partially resolved
by demanding that the density, ρ = ρA, so that m ≡ vp(4πρ)

1/2/Bp = 1 defines the critical
surface. In the super-Alfveńic regime the gas density is smaller than ρA.

• Another regime is the fast magnetosonic flow which is characterized by

n ≡ vp(4πρ)
1/2/(B2

p +B2
φ)

1/2

and the fast magnetosonic surface is defined by n = 1.

• The slow point is passed when the gas exits the disk atmosphere, and the demand that the
flow must pass smoothly through the two other critical surfaces yields two conditions. This, in
addition to a given distribution of ωf and E on the disk surface, completely defines the problem;
the Grad-Shafranov and Bernoulli equations can then be solved for ρ and ψ. In particular, the
conditions are obtained by taking a determinant of the two equations expanded to first order at
the surfaces, i.e., the definition of critical surfaces yielded by both the equations should be the
same. But, the full cold non-linear MHD flow problem with the four constraints is complicated.

• We can simplify the issues by calculating the solutions in the asymptotic fast magnetosonic
linear regime, n = 1, in addition to making assumptions of self-similarity (which implies that
the Alfvén surface is a cone) and it can be shown that the solutions collimate to cylinders in the
asymptotic regime

• We provide a class of self-similar solutions with a power law form for ψ in the asymptotic regime.
The condition for collimation in their formulation requires that Bp ∼ rx, where x < −1.

Astrophysical Applications

• The problem involves poloidal acceleration of the plasma using a hydromagnetic scheme outlined
in the introduction. The main intent here is to match dynamo solutions emerging from the disk
atmosphere to the magnetic structure of the wind. A complete solution should provide the run
of density, velocity and energy along the stream lines. The usual simplification of axisymmetry
is made and a steady state is assumed.
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Table 1: Properties of accretion systems
Type Central object M/M⊙ ṁ/M⊙yr−1 rin (cm) rout(cm) B(rin) (G) vjet (cm/s)
AGN Black hole(BH) 106 − 109 0.1-10 1012 − 1014 1018 103 ∼ c
XRB BH/Neutron star 1-10 10−10 − 10−8 106/108 1012 106/108 ∼ 1010

CV White dwarf < 1 10−10 − 10−8 109 1011 103 ?
YSO Protostar 1 10−7 − 10−4 1012 1017 100 107

• A distinction is made between the Electrodynamic force-free models where the inertia is ignored,
and those that include inertial forces in the treatment.

• A further simplification involves self-similarity, i.e., the properties of the solution are independent
of the location, arising from an expectation that the extraction of angular momentum (∝ r1/2)
scales similarly in radius as magnetic torque (∼ ψ2/r ∼ B2r3) which demands that the magnetic
field scale as r−5/4. Since the dynamo fields we have derived are not self-similar, a general
treatment is necessary.

An Electrodynamical model

• Here we present the development of the theory based on earlier work involving steady MHD
flow and the Grad-Shafranov equation, and formulate the problem with appropriate boundary
conditions. Relevance of the solutions to observables such as the terminal speed of the jet, the
luminosity or the thrust in the jet, etc., in various objects is also briefly discussed.

• In this model, the generated dynamo field is matched to a relativistic jet emerging from a force-
free magnetosphere. The physics governing the magnetosphere is given by the pulsar equation
which is derivable from the general form of Trans-field equation. However, it is worthwhile
to obtain it from first principles. The conditions in a magnetosphere which is dominated by
electromagnetic fields are given by

∇ · E = 4πρe,

∇× E = 0,
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∇× B = (4π/c)je,

E + (1/c)v × B = 0,

ρeE + (1/c)je × B = 0.

• Note that the conservation laws, derived earlier, still hold. The perfect conductivity condition
provides

E = −(1/c)v × B = −(1/c)[ω − κ(ψ)Bφ/(4πρr)]∇ψ = −(1/c)ωf∇ψ

where the earlier definitions, and the slippage condition were applied.

• The conservation of angular momentum implies

rBφ = T (ψ),

where the angular momentum of the gas is neglected in comparison with the poloidal current,
T (ψ). Next, by taking the component of the relativistic Euler equation parallel to ∇ψ, one
obtains

[ωf∇
2ψ − ∂ψωf(∇ψ)2]ωf/c

2
− [

1

r2
](∇(T 2)/2 −∇ψΛψ) = 0

(1 − [ωfr/c]
2)Λψ − (1/2r2)[∇(ωfr

2/c)2] · ∇ψ + T∂ψT = 0,

• For convenience we define
L(r) = (ωfr/c)

2 = (r/rL)2

where rL is the light cylinder radius (the radius at which the magnetic surface rotational velocity
equals the speed of light). Now we make an assumption: the field is taken to be the form

T (ψ) = µψ,

which is obeyed by non-relativistic force-free fields (note that ψ is to be determined by the pulsar
equation below).
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• In the current electrodynamical model, we can consider a trial problem to match to the steady
dynamo generated structure. With the above ansatz, we can reduce the relativistic Euler equa-
tion to the linearized pulsar equation

r2
∇ ·





1

r2
(1 − L(r))∇ψ



 + µ2ψ = 0,

which is degenerate at r = rL.

• It is seen in the non-relativistic limit, rL → ∞ (L = 0), that the force-free eigenfunctions

r J1(k
1
nr) exp(−

√

k1
n
2
− µ2z), are recovered. In order to complete the formulation the boundary

conditions at the disk-jet interface need to be specified. The approach taken here is to give
precedence to the dynamo generated field, i.e., the disk solutions are expanded in terms of
eigenfunctions of the jet (pulsar) equation. The solutions are evaluated by the same boundary
conditions as before, which is equivalent to demanding an absence of a sheet current on the disk
surface, and the solenoidal nature of the field. Hence,

[ψ](1) = 0, [
∂ψ

∂z
](1) = 0,

and
bn(1) = µan(1),

where the brackets indicate continuity.

• In this formulation the entire magnetic topology (disk and jet) is decided by the dynamo number,
the wavelength of the external force-free fields, and the spin of the magnetic surface.

Approach to analytical solutions

• The relativistic equation can be written as










r∂r[
(1 − L(r))

r
∂r] + (1 − L(r))∂2

z + µ2











ψ = 0
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which can be simplified to a Sturm-Liouville type equation in r, as z decouples from the system
via ψ = exp(iqz)G(r).

• The resulting equation has a singularity at rL and therefore the solutions on either side of rL
should obey

[(2/r)∂rG = µ2G]r=rL.

• Then one has to connect the solutions which can be evaluated separately, using the above
condition. A well known property of the Sturm-Liouville equation is that it yields orthonormal
eigenfunctions and eigenvalues.

Remarks on observables
The important observable that wind theory can provide is the luminosity of the jet. In MHD models,
this is simply

Ljet =
∫

∂ψ[Ṁw(ψ)]v2
∞dψ,

where
Ṁw(ψ) =

∫

ρvp · ẑ 2πrdr = (1/2)
∫ ψ

0
κ(ψ′)dψ′

is the wind mass loss rate within the magnetic surface, ψ, and the previous equation follows from its
definition, (), and Stoke’s theorem. Similarly the angular momentum carried away by the wind can
be estimated and this contributes directly to the accretion in the disk. It is shown that for a finite
current on the axis, the asymptotic wind velocity and the luminosity of the jet are in agreement with
observed values for both YSOs and AGN.
In the Electrodynamical model considered above, the wind luminosity is calculated from the Poynt-

ing vector, S = c
4πE × B,

Ljet =
∫

S · ẑ 2πrdr =
c

2

∫

ErBφrdr = −
∫

ωfT(ψ)dψ,

where the Eφ term is zero (gradient of an axisymmetric potential). Note that the inertia is ignored
compared to the electromagnetic energy. In the formulation above it follows that

Ljet = −
µ

2
ωfψ

2
j ,
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where ψj is the flux at the jet radius. It is clear from this expression that a radiative boundary
condition has to be applied, in order that the jet carry away electromagnetic energy.

Summary & Conclusions

• A general treatment of axisymmetric MHD flows was considered using a new approach. A by
product of the analysis are solutions for inviscid conducting rotating fluids. A set of unique
constraints on magnetic stream functions have been found. They could be applied to supercon-
ducting and superfluid flows with possible applications to terrestial plasma experiments or to
neutron stars interiors.

• A MHD wind passing through 3 critical surfaces has been formulated that self consistently
matches to equatorial dynamo generated flux. The dynamo flux eigen functions have been
calculated. Such solutions will be used to produce non-self similar flow geometries.

• There are subtle but essential difference is the wind geometries for AGN, XRB, and YSOs. The
estimates for the jet luminosities and terminal velocities are reasonable. The correct calculation
of rA is crucial in determing v∞.

• It is worth exploring the ED model in the simplest form. Realistic models can be extended from
these.
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