DENSITY PROFILES OF MERGER REMNANTS OF INTERACTING GALAXIES

P.M.S.Namboodiri

Important parameters in a galactic encounter:

(1)The impact parameter

(2)The velocity of collision

(3)The mass ratio of galaxies

Dynamically important parameter is the distance of closest approach (perigalactic distance).

Geometry of collision

Other parameters are less significant

Computations are performed to see
for what values of p merging takes place
what is the density profile of the merger remnant

Model galaxy

Density n=4 polytrope; appropriate for elliptical & bulges of spirals $10^{11} M_{\odot}$ Mass Radius 45 kpc H-Radius R_h 8.3 kpc 10% mass 3 kpc $2 R_h$ 90 % mass Crossing time t_{cr} 2.8 unit

Model galaxy is close to virial eqlbm. with no net ang. mom.

<u>UNITS</u>

G = 1 $M = 10^{11} M_{\odot}$ L = 10 kpc t = 4.7 M yrV = 210 km/s

- Bound orbit encounters merge rapidly.
- Collisions with high e produce negligible tidal effects.
- Encounters in which the galaxies move on parabolic orbit is expected to produce maximum tidal effects.

Two equal mass galaxies set to move on parabolic orbit

Orbital plane coincides with X-Y plane Distance of closest approach p/R_h takes on values in the range 0.5 – 10

Evolution of the collision is followed by self-consistent N-body simulations

Model	Init Vel	Sep.	p/R_h	V_p / V_e
P1	0.633	10	0.5	0.483
P2	0.447	20	1.0	0.573
P3	0.447	20	2.5	1.023
P4	0.365	30	3.0	1.102
P5	0.365	30	4.0	1.214
P6	0.447	20	5.0	1.435
P7	0.365	30	6.0	1.518
P8	0.365	30	7.5	1.731
P9	0.447	20	10.0	2.032

Models P1 – P4 merge in less than 40 t_{cr} P5 – P9 do not merge even after 70 t_{cr}

$$\hat{E} = \frac{E_{orb}}{0.5 < v^2} \qquad \hat{L} = \frac{L_{orb}}{R_h < v^2 >^{0.5}}$$

These dimensionless quantities generally determines the out come of a galactic collision (Binney & Tremaine, 1987)

Model	$\Delta U / U $	$\Delta M/M$	$(\Delta M / M)_E$	t_m/t_{cr}
P1	1.033	0.173	0.186	7.1
P2	1.011	0.166	0.193	10.6
P3	1.016	0.161	0.218	26.5
P4	1.030	0.182	0.226	35.3
P5	0.457	0.077		
P6	0.435	0.043		
P7	0.436	0.055		
P8	0.427	0.047		
P9	0.431	0.048		

Merging ModelsThe relative change in energy $\Delta U/|U|$ gives the
strength of interaction. $\Delta U/|U| > 1 \Rightarrow$ less massive galaxy suffers
disruptionModels P1 – P4 undergo considerable disruption
before merging.

 $\Delta M/M$ - the mass loss – less than 18% Effective mass loss is less than 23 %. Non-merging Models

 $\Delta U/|U| < 1 \quad \Delta M/M < 8\%$ Retains initial structure.

The surface density profiles fitted with de Vaucouleur's $r^{1/4}$ law

$$\log\left[\frac{I(r)}{I(0)}\right] = -3.33 \left[\left(\frac{r}{r_e}\right)^{1/4} - 1\right]$$

 r_e is the radius containing half the total light

The fit is remarkably good in the inner region up to $R = 4 R_{h}$

Beyond this point the density shows tendency to develop tidal distension (Kormendy 1977).

CONCLUSIONS

For equal mass galaxies moving on parabolic orbits

> merging occurs when $p < 4R_h$

merging occurs not in the first close collision but only during subsequent close contacts.

➤ the surface density profiles of the merger remnants follows r^{1/4} law up to $R \approx 4R_h$ and shows tendency to develop tidal distension in the outer regions

The rate of tidal disruption and merger for a pair of galaxies is given by

 $\frac{t_d}{t_m} \approx \frac{6}{(5-n)} \frac{a}{R} \frac{M}{M_1}$

