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Abstract 

 

While the importance of phase space constraints for gravitational clustering of neutrinos (which are fermions) is well recognized, the 

explicit use of such constraints to limit neutrino emission from ultra energetic sources has not been stressed. Special and general 

relativistic phase space constraints are shown to limit neutrino luminosities in compact sources in various situations. 

 

 

 

 

 

                                                 
1
 Christ Junior College 



 2 

 

 

 

 

 

 

 

 

 

1. Introduction 

The most energetic events occurring in the Universe such as supernovae and gamma ray bursts not only involve the emission of 

prodigious amounts of electromagnetic radiation of all bands in a short time duration but are also expected to be accompanied by 

corresponding vast energy generation in the form of neutrinos.  

 

As is well known, in the late stages of the evolution of a massive star neutrino emission dominates (reducing the lifetime of the star 

when it starts fusing heavier elements). Processes such as photoneutrino production and pair annihilation into neutrinos dominate at 

core temperatures of more than a billion degrees.  

 

The core collapse of such a massive star results in a Type II supernova and formation of a neutron star (or black hole) as remnant. The 

protoneutron star cools from a temperature of a few billion degrees and most of the binding energy of the neutron star ( )ergs53103×  is 

radiated in the form of neutrinos in a period of a few seconds.  
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Again gamma ray bursts releasing 5351 1010 −  ergs in a few seconds are also expected to release an intense burst of neutrinos during 

the same period. [1] 

However unlike photons, neutrinos being fermi particle are constrained by phase space (i.e., two particles per unit volume of phase 

space, i.e., 3
h , 

π2

h
=h  being Planck constant). 

Many of the discussions of intense neutrino bursts and emissions (e.g. ref. [1-4]) do not seem to consider this aspect.  

 

As we shall see, these constraints limit the neutrino luminosity in various situations. When discussing neutrinos as dark matter (DM) 

candidates (especially for galactic halos), it is well recognised that taking into account that the neutrinos, being fermions, phase space 

densities must satisfy the inequality 333 . h≥pdxd , constrains the neutrino mass. For example see [5,6,7]. 

 

More precisely for a given dark matter density DMρ  (assumed to be dominated by say neutrinos of mass νm , so that ννρ nmDM = ) and 

a typical galactic (constant) rotation velocity of v, this constraint on the mass νm , translates into, 

4
1

3 





≥

v
m mρ

ν

h
. 

(For a typical 324 /10;/200 cmgmskmv DM

−≈≈ ρ , this gives eVm 50≥ν ). 

Similar phase space constraints on νm  arise from neutrino clustering in the gravitational potential of galaxy clusters etc. 
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While the importance of phase space constraints for gravitational clustering of neutrinos is well recognised [5], the explicit use of such 

constraints to limit neutrino emission for ultra energetic sources has not been highlighted. 

 

2. General Case 

Let us consider a general example first. Consider neutrinos of average energy νE  being emitted from a source. Let νn  number density 

of the emitted neutrinos produced. Then the phase space constraint 333 . h≥pdxd , translates into: 

3

3

1
h≥







−

c

E
n ν

ν . 

Giving, 

3









≤

c

E
n

h

ν
ν             …(1) 

Further if νε  is the energy density of the emitted neutrinos, i.e., νννε En= , then we have: 

( )3

4

3

3
1

c

E
E

c

E

hh

ν
ν

ν
νε =








=            …(2) 

 

Equation (2) then implies the phase space constraint on the neutrino flux as: 

32

4
1

4 hc

E
f ν
ν ≤              …(3) 

 

For MeVE 10≈ν , this implies, 
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scmergsf //103 239×≤ν            …(4) 

Notice the 4

νE , energy dependence! 

(For 1 MeV, this is about scmergsf //103 235×≤ν ). 

 

If the binding energy of the neutron star ( )ergs53103×≈  is released by neutrino emission over a period of about ten seconds [7], 

equation (4) would constraint the source size to be about a few kilometres and also give an upper limit to the source temperature if the 

emission is thermal.  

 

These constraints are consistent with the intense emission of the neutrinos by a protoneutron star (like in the case of SN1987A). 

 

More generally, if the neutrino diffusion time is dt , then if νκ  is the neutrino opacity; n is the number density of neutrons, then; 

cn
td

νσ

1
≈ ; νν σκ Pnm~            …(5) 

 

Equations (3)-(5) can be used to constrain source size. Using a total neutrino opacity [8], 1

2

17

4
102 −−







×= cm

MeV
kTν

ν ρκ , we can 

further refine the constraint. 

The outgoing neutrinos could accelerate (by exerting pressure) a spherical shell of matter of radius r and thickness dr . This 

acceleration can be expressed as, 
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dr
c

L

drr
a νν

ν
ρπ

κ
24

= , nnm=ρ           …(6) νL  would be constrained by equations (1)-

(4). If the number of neutrino scatterings is N, then, 

( )
32

4

32

4

32

4
2212121

4

41

4
4

hhh nc

NE

c

E

n

N

c

E
nNL

ν

νν

ν

ν
νν

σ

π

σ

π
σπ ≈≈≈ −−        …(7) 

Plugging in the values we get, 

sec/102 52
ergsL ×≈ν . 

This can be used in equation (6) to give the value of the acceleration as, 

26 /102 scma ×≈ν . 

 

3. General Relativistic Case 

For compact objects like neutron stars, where General Relativistic effects could be substantial we could use the corresponding 

generalised phase space relation, 

( )( ) 33

00

3

00 h≥pdgxdg            …(8) 

 

Assume same metric coefficient for both co-ordinate and momentum space.  

Where, the coefficients of the Schwarzschild metric are, 









−=

200

2
1

rc

GM
g ; 









−

=

2

11
2

1

1

rc

GM
g ; 2

22 rg = ; θ22

33 sinrg = . 
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The phase space constraint in this case gives the limit on the number density as, 

3

2

2
1 
















−≤

c

E

rc

GM
n

h

ν
ν             …(9) 

The reduction in the energy due to the redshift is given by, 

2
rc

GM

E

E
=

∆
. 

For a typical KmrMM 10;4.1 == Θ , this shift is of the order of E1.0 . 

The upper limit for the energy density in this case is given by, 

( )3

4

2

2
1

c

E

rc

GM

h

ν
νε 








−≤ , 

 

The maximum flux is given by, 

νε
4

c
F ≤            …(10) 

For MeVE 10≈ν , this implies, 

scmergsf //105.5 238×≤ν          …(11) 

 

Again considering the binding energy of the neutron star ( )ergs53103×≈  released by neutrino emission over a period of about ten 

seconds, equation (11) would constraint the source size to be about 30 kilometres.  
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In certain cases, the entire energy of the burst could be emitted in the form of neutrinos, giving a silent burst in gamma rays, like in the 

case of collision of neutron stars. The kinetic energy ( )ergs5310≈  of the two NS as well as their binding energy ( )ergs53103×≈  will 

be released in the burst, giving a total energy released in the form of neutrinos as, ergs53107 ×≈ . 

 

4. Special Relativistic Case 

Due to the high velocities of the emitted neutrinos, we have to take into account the Special Relativistic corrections on the phase space 

constraints, 333 . h≥pdxd . 

 

The deceleration radius of the gamma ray burst gives the co-ordinate space. For a neutrino energy of νE  and number density n, the co-

ordinate space is given by,  

 










Γ
==

22

33

4

3

cnm

E
Rxd

P

D

ν

π
 and the momentum space 









Γc

Eν . 

 

Including these Special Relativistic effects the phase space constrain becomes,  

3

3

224

3
h≥









Γ








Γ c

E

cnm

E

P

νν

π
. 

 

Which gives the limit on the number density of the neutrinos as, 
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3

3224

3









Γ








Γ
≤

c

E

cm

E
n

P h

νν

π
         …(12) 

And the limit on the energy density as, 

ν
νν

ν
π

ε E
c

E

cm

E

P

3

3224

3









Γ








Γ
≤

h
        …(13) 

Notice the 5

νE  dependence and also note the sharp 5Γ  dependence! 

 

The phase space constraint on the flux from equation (13) is given by, 

νν ε
4

c
f ≤            …(14) 

For MeVE 10≈ν ; scmergsf //104 236×≤ν       …(15) 

 

Considering the binding energy of the neutron star ( )ergs53103×≈  being released by neutrino emission over a period of about ten 

seconds, equation (15) would constraint the source size to be about 200 kilometres.  

 

Neutrinos being fermions will obey Fermi-Dirac statistics. Hence the maximum allowed energy is the Fermi energy FE . 

For a neutrino emission in a cone of angle νθ , the energy flux is given by, 

ν

θ

ν ε
π

θν

c
dp

cEdF
FE

P 3

0

3

2

0
16

cos1−
=Ω= ∫∫

h
. 
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Where, the energy density is given by, 
3







=

h
F

F

p
Eνε . 

This gives an upper limit on the neutrino luminosity. 

νν επ cRFR
2

4
2

2

0

2

0

Γ
=  

tcR ∆≤Γ
2

2

. 

The bursts energy is given by, 

2

2Γ
∆< tLE νν . 

If the neutrino burst energy is constrained by the binding energy of the neutron star ( )ergs53103× , then the burst duration is given by,  

ν

ν

L

E
t

2

2

Γ
=∆ . 

Including both special relativistic and general relativistic effects into account, we have the neutrino flux given by, 

ν
νν

ν
π

E
c

E

cm

E

rc

GMc
f

P

3

3222 4

32
1

4









Γ








Γ








−≤

h
. 

The comoving luminosity is given by, 

24 RfL πνν = . 

In the observer’s frame it is given by, 
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22

3

3222

22 32
1

4
4 Γ









Γ








Γ








−=Γ= RE

c

E

cm

E

rc

GMc
RfL

P

ν
νν

νν π
h

. 

 

5. Modelling GRB 

The phase space constraints obtained for the neutrino flux can be used to model the gamma ray burst, by determining the limit on the 

energy density. 

 

The neutrinos will undergo pair neutrino annihilation: 

γγνν +++→+ −+
eeee  

 

The minimum energy required for this interaction is given by, 

MeVcme 12 2 ≈ . 

The cross section for this interaction is given by, 

( )
cnn

c

EG
R ee

F ×=
4

22

h
. 

Where, 2
vnR σ= . 

And in equilibrium condition the electron and positron densities are given by, 

3









=== −+

c

kT
nnn eee

h
.  

The energy density is then obtained as, 
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( )kTR=ε  

( )
( ) 3

9

56

33

4

22

/
1

10 cmergs
K

T
kTc

c

kT

c

kT

c

EGF 







=








×








= −

hhh
ε . 

 

The flux is given by, 

scmergs
K

Tc
f //

1
105.7

4

2

9

47








×== −ε . 

The flux obtained from the phase space constraint is of the order of scmergs //104 234× . For the two to be comparable, the 

temperature should be of the order of K
910 . 

 

One of the mechanisms suggested for the production of intense gamma flux in gamma ray bursts is the neutrino annihilation reaction: 

γγνν +→+ ,  

 

This is especially relevant perhaps for the short duration bursts where merger of two neutron stars is expected to occur. The combined 

binding energy could be released substantially as neutrino pairs, which could annihilate to produce gamma rays. 

It follows that phase space constraints on the neutrino and antineutrino fluxes would in turn imply a constraint on the gamma ray flux 

arising from this mechanism. 

 

Interactions of hadrons in the region of gamma ray burst (close to central engine and in the jet) could produce high-energy neutrinos 

and high-energy gamma rays: 
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eepn

pppp

ν

γπ

π

++→

→

++→+

−

20

0

 

ee ννµ

νµπ

µ

µ

++→

+→

++

++

 

 

Phase space constraints apply to the high-energy neutrinos (resulting from hadron decays, etc.) and the maximum neutrino energy 

released is given by, 

sec/
4

2

2267

422

ergs
c

c

EG

c

EEG tFtF

Γ








= νν ε

hh
. 

 

In the following process, νµπ +→ , the pions produced by proton-proton or proton-photon collisions ( 0π++→+ pppp , 

−+ +++→+ ππpppp , etc. −+ ++→+ ππγ pp , etc.) would be of high energy. 

 

For example, for a pion energy of GeVE 200=π , the decay neutrino energy is given by: 

GeVE
m

mm
E 85

2

22

≈












 −
= π

π

µπ

ν . 

The maximum limit for the neutrino momentum is given by, 

( ) cTeVcGeVcEP
25 1021021 ×=×≈+Γ= νν β . 
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For ( )cv ≈≈ ;1β  and 1000=Γ . 

 

This would also apply for other high energy ( )TeV  neutrino sources like microquasars, blazars, etc. [10] with implications for the 

expected detectability of fluxes of such particles (at various distances) in large-scale neutrino detectors like Amanda, Icecube, etc. [8] 

The estimates of constraints and fluxes would be taken up in a later publication [17].  
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