Effects of higher order triples in Coupled cluster method

Rajat K. Chaudhuri

Plan of the talk

* Brief introduction to Coupled Cluster Theory
* Inclusion of higher order effects in CC
* Applications
* Single and double lonization (related Auger) potentials
* Electron affinities
* Transition energies
* Allowed as well as forbidden transitions
* Dissociation energies
* Geometrical parameter and Structure
* Vibrational frequencies and stability etc

Criteria that the theory should satisfy

> Predictibility
> Maintain size-extensivity of the energy over the entire of PES.
$>$ Rapid perturbative convergence i.e., Intruder free
> General applicability

Some well known problems
Energy levels of Pt atom
$6 s^{2}\left({ }^{1} S_{0}\right) \rightarrow 5 d 6 s\left({ }^{3} D_{1}\right)$ M1 transition amplitude

Basic formalism of Coupled Cluster Theory (CCT)

The starting point of CCT

$$
H=H_{0}+V
$$

The full many electron space of dimension N is then partitioned into a reference space of dimension M. defined by the projector P and its orthogonal complement associate with the projector $\mathrm{Q}=1-\mathrm{P}$.

A wave operator Ω is introduced that satisfies,

$$
\Psi_{\mathrm{i}}=\Omega \Psi_{\mathrm{i}}
$$

where Ψ_{i} and Ψ_{i}^{0} are exact and unperturbed wave functions.

$$
H_{\text {eff }} \Psi_{m}^{0}=E_{m} \Psi_{m}^{0} \quad m=1,2, \ldots M
$$

where $H_{\text {eff }}=P H \Omega P$.
where

$$
\Omega=\{\exp (S)\}
$$

One can arrive this expression from RayleighSchröndinger Perturbation theory(RSPT)
$\mathrm{S}=\Sigma \mathrm{S}_{\mathrm{i}}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\ldots \ldots$

$a_{p} \dagger^{\dagger}$
$a_{h} \downarrow$

$$
H \Omega P=E \Omega P
$$

Multiplying $\boldsymbol{\Omega}^{\mathbf{- 1}}$ from left

$$
\begin{gathered}
\Omega^{-1} \mathrm{H} \Omega P=E P \\
H^{\prime} P=E P
\end{gathered}
$$

Projecting on \mathbf{P} and \mathbf{Q} from left, we get

$$
\begin{gathered}
P H^{\prime} P=E P \\
Q H^{\prime} P=0
\end{gathered}
$$

where

$$
H^{\prime}=\Omega^{-1} \mathrm{H} \Omega=\mathrm{H}+[\mathrm{H}, \mathrm{~S}]+1 / 2[[\mathrm{H}, \mathrm{~S}], S]+\ldots \ldots .
$$

This series terrminates at the fourth power of S !!!

* For $\mathrm{S}=\mathrm{S} 1+\mathrm{S} 2$, , CCT is called CCSD.
* CCSD is size-extensivity as its wave- function is multiplicatively separable

For $S=S_{1}+S_{2}+S_{3}$, the scheme is called CCSDT $S=S_{1}+S_{2}+S_{3}+S_{4}$ the scheme is called CCSDTQ

Equilibrium bond length (Å)

	State	Observed	$\Delta_{\text {CCSD }}$	$\Delta_{\text {CCSDT }}$
N_{2}	$\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$	1.0977	0.0078	0.0004
CO	$\mathrm{X}^{1} \Sigma$	1.1283	0.0067	0.0001
C_{2}	$\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$	1.2422	0.0028	0.0001

Harmonic frequency ($\mathbf{c m}^{-1}$)

	State	Observed	$\Delta_{\text {CCSD }}$	$\Delta_{\text {CCSDT }}$
N_{2}	$\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$	2359	86	25
CO	$\mathrm{X}^{1} \Sigma$	2170	73	5
C_{2}	$\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$	1856	46	14

Straight forward inclusion of higher order cluster is, however, computationally expensive and that is why CCSDT, CCSDTQ schemes applications are very limited.

How to include higher order excitation at CCSD framework?
We introduce the unitary CC ansatz of the form

$$
\Omega=\left\{\exp \left(\mathrm{S}-\mathrm{S}^{\dagger}\right)\right\}=\{\exp (\sigma)\} \quad \sigma^{\dagger}=-\sigma
$$

Instead of

$$
\begin{gathered}
\Omega=\{\exp (S)\} \\
H^{\prime}=\Omega^{-1} \mathrm{H} \Omega=H+[H, \sigma]+1 / 2[[H, \sigma], \sigma]+\ldots \ldots .
\end{gathered}
$$

This is a non-terminating series !!!

But it contains higher order clusters (S_{3} and S_{4} even at CCSD level. This CC variant is called UCC.

UCC is variationally bound !!!

Excitation energies of C II (in cm ${ }^{-1}$)

Term	Observed	$\Delta E_{\text {ccsd }}$	$\Delta E_{\text {uccsD }}$
$2 p^{2} P_{1 / 2}$	0	0	0
$2 p^{2} P_{3 / 2}$	63	10	18
$3 p^{2} P_{1 / 2}$	116537	100	42
$3 p^{2} P_{3 / 2}$	131724	100	45

$\Delta E_{\text {Method }}=\mid$ Obs. $-E($ Method $) \mid$

Thank you

