
Ongoing Software Development Projects under Linux/QNX

1. CCD Image acquistion software under Linux

i) Gtk version(2.0) ii) IDL version (6.3)

-V.Arumugam, A.V.Ananth

2. Software development under QNX REAL-TIME O.S. Although our efforts are for

CONTROL applications specifically for HAGAR, as an initial step we have tried

CCD image acquistion software development in QNX to familiarise with various

features like Photon Application Builder(PhAB), Resource Manager, Process

Manager etc.

-V.Arumugam, A.V.Ananth

3. Distributed Telescope control system for 30” telescope at VainuBappu

Observatory.The approach we have planned is similar to that of 2 Mtr.

Telescope.The advantage of this is scheme is its enoromous flexibility in

implementation in the sense ,that different sub-systems could be

modified/implemented at different points of time without substantially modify

software related to other sub-systems.Also back-ends can also communicate with the

telescope and other sub-systems if required to tap information.

-V.Arumugam, A.V.Ananth, KavithaPathak, Faseehana, Anbazhagan

CCD Image acquisition software under Linux

i) Gtk version (2.0)

ii) IDL version (6.3)

MODEL: It is a Client/Server Design where the Server can be local

or at remote site and client accesses the server on LAN/WAN.

Applicability: This software intended for 2Kx2K TEK chip and

2Kx4K Marconi chip. Can be used with a little modification for

any other sensor in future if appropriate Hardware modifications are

made for the existing controller.

Drawbacks: As linux and gtk/genome are freely available software

and are continuously being modified their version keep changing

and hence maintenance of camera software is a hectic task.

Moreover Gtk coding is complex and difficult to maintain.

IDL : Interactive Data Language developed by Research

System Inc(www.rsinc.com).

Version used: 6.3

Advantages: very simple function calls, API and

commands. Built-in image analysis and processing

functions and produces versatile display.

Drawback: It is costly, because every license is

chargeable. Compatibility with C/C++ is not straight-

forward. IDL programs can not call C routines directly.

C programs are converted into C-objects, IDL program call

these C-objects to perform intended task.

Memory consumed by the software is little bit high.

Good resolution monitor with large Video RAM is

needed.

Hardware

Kernel

Device

Driver

User

Program

Shell

User

System

calls

User

General Process Communication Concept in LINUX

User Programs invokes IOCTL calls to talk to the Device driver

which inturn talk to the kernel to communicate to the Hardware

Scheme for CCD Image Acquisition Software under Linux

GUI

Client

Server

Driver

Kernel

Controller

KERNEL

SPACE

At Remote site

USER

At Local site

User GUI
Commands on

Serial port Controller

CCD

Parallel Port

FIFO

Computer

DATA

Image

Data

Host Interface

Card

Hardware arrangement for CCD Image Acquisition

Output of CCD Image Acquisition Server – Gtk Version

Client which acquired a bias frame of size 90x90

A dark window ready to acquire a frame of size 2Kx4K

A window ready to acquire a frame of size 2Kx4K

A bias frame of size 2Kx4K (GTK version)

Output of IDL version of server

Client which acquired a bias frame of size 90x90 (IDL)

A sample ROI facility for a small frame 90x90 (IDL version)

A bias full frame of size 2Kx4K (IDL version)

Performance

The data transfer rate is 2 minutes 20 seconds for 2Kx4K image

with 2 readouts and 4 minutes 23 seconds for single readouts

The data transfer rate is 2 minutes 25 seconds for 2Kx2K image

for a single readout since, there is no multiple readout capability.

Status

The system is currently undergoing tests for multi-read out operations.

QNX TARGET

SELF HOSTED

LINUX HOST

WINDOWS

HOST

SOLARIS

HOST

PHOTON MICRO GUI

i) IDE ii) Photon Application Builder(PhAB)

QNX Real-Time Operating System primarily for embedded applications but

here we are using for desktop. It compares in performance with other Real-

Time OS like VxWorks, PSoS, RT-Linux, Windows-CE

Linux,Window,Solaris hosts are purely for development environment.

QNET

Why QNX?

Because QNX is POSIX compliant and original HAGAR software was

under Linux, hence porting is relatively simple.

Advantages of QNX:

1. High Availability: Small or large, QNX installed systems have high

availability because of fault tolerant features. Can be accommodated

in systems with very limited resources.

2. Message Passing – Message Passing virtual software bus that lets you

dynamically plug in, or plug out, any component on the fly.

3. POSIX Compliance – It enables the creation of reusable software

assets if coded in UNIX/LINUX and improve productivity, and

accelerate product delivery.

4. Transparent Distributed Processing – It provides a framework for the

dynamic interconnection of hardware and software resource located

on remote nodes, using standard messages. Processes running on a

single CPU will continue to communicate with each other even if they

are subsequently distributed among multiple CPUs. With this unique

capability creation of robust and fault-tolerant systems that offer on-

demand access to resources on multiple CPUs is possible.

5. Symmetric multiprocessing – It is the only commercial RTOS to support true SMP,

providing a huge performance boost to compute-intensive systems involving Real-Time

Applications.

6. Advanced Graphics – Photon MicroGUI

7. Critical Process Monitoring(CPM) – QNX Neutrino’s modular,microkernel

architecture enables the isolation of faults right down to the driver level. Together with

CPM,”smart watchdog” technology that helps system recover from faults

automatically. This approach enables the development of truly self-healing systems.

8. Networking Technologies – It provides a comprehensive suite of natively supported

networking protocols based on industry standard implementations.

9. Resource Manager – It provides a simple mechanism to write drivers for custom

hardwired boards.

10. Java Environment – Has J2ME support.

Processors supported by QNX

i) (little endian) X86

ii) ARM

iii) MIPS

iv) PPC(big endian)

v) SH(little endian)

Traditional Monolithic kernel

Scheduler

Memory Manager

Network Stack

Serial Driver

Disk Driver

File System

Application User Interface Application

The kernel contains the OS kernel functionality and all the drivers. so driver

development is complex and debugging can be painful and any failure with the device

driver would adversely affect the functionality of the whole system.

Problems with Monolithic Kernels

Micro kernel

Process

Manager

File

manager

Photon

Gui

manager

Software Bus

N/W Stack

devb-eide

Ksh

dev-ser8250

User Interface

Appln

Process
Appln

Process

Interaction between components in QNX RTOS

The Micro-kernel manages a group of cooperating processes. QNX neutrino acts as a

kind of software bus that lets us dynamically plug in/out OS modules whenever they

are needed. This is a very important aspect for embedded systems.

Processes are separate from kernel so if something goes wrong it will never affect

kernel.

Applications are processes in protected memory space, so the kernel is protected from applications and

applications are protected from each other.

The ProcessManager places information about all the currently executing processes at /proc filesystem.

MICROKERNEL – SERVICE

Microkernel is very small it is dedicated to only a few fundamental services.

Thread services via POSIX

Signal services via POSIX

Message-passing services

Synchronization services

Scheduling services – Microkernel schedules threads for execution using the various

POSIX real-time scheduling algorithms.

Timer services – provides rich set of POSIX timer services.

Process Management service – The Micro-kernel and Process Manager together form a

unit called Procnto.

Micro kernel

Process

Manager

QnxFile

manager

Photon

Gui

manager

Software Bus

N/W Stack

devb-eide

Ksh

dev-ser8250

User Interface

Appln

Process
Appln

Process

Processes communicate with each other

Message Passing – It forms a virtual “software bus” that let you dynamically plug

in, or plug out, any component on the fly. Enabled by its message-passing design,

QNX Neutrino implements only the most fundamental services in the OS kernel, such

as signals, timers, and scheduling.

Process

Manager

QnxFile

manager

Photon

Gui

manager

Software Bus

N/W Stack

devb-eide

Ksh

dev-ser8250

User Interface

Appln

Process
Appln

Process

Procnto

Communication with Process Manager

Micro kernel

Processes communicates with ProcessManager using

Message-passing IPC
Process Manager provides

•Process creation and termination e.g: spawn/exec/fork.

•Pathname management

•Memory protection, address space management

•Packaging of groups of threads together into processes

CLIENT

library

Process Manager Resource Mger

1
2 4

1. Client library(open()) sends a “query” message

2. Process Manager replies with who is responsible

3. Client’s library establishes a connection to the specified resource manager and sends

an open message.

4. Resource manager responds with status(pass / fail)

3

RESOURCE MANAGER – A user-level server program that accepts messages from other

programs and , optionally, communicate with hardware, it is a process that registers a pathname

prefix in the pathname space(e.g /dev/ser1),other process can communicate to it.

Kernel calls are pre-emptible.

Benefits:

1. Responds to external events faster

2. Shorter interrupt latency(order of micro seconds)

3. Low Scheduling latency

IPC provided by the kernel

Messages – exchanging information between processes.

Client Server

SEND

REPLY

Process 1 Process 2

Pulses – used for event notification but asynchronous

PULSE

Signal – Interrupts another processes

Process 1 Process 2

Procnto

Micro kernel

Process

Manager

Software Bus

Resource

Manager

Photon

GUI

CCD Client
CCD Controller

High level design of QNX version of CCD software

Other IPC includes Message Queues,Shared Memory, Pipes, FIFOS

GUI for QNX version of CCD Software

Status of QNX version of CCD software:

At present the CCD Imaging software acquires the image

data but needs to be analyzed on a LINUX system.

User Manager
Linux app

UI
Scheduler User Instruments

Observatory Server

Mets VI Autoguider VI

Mets Serial

Server

Mets Data

Logger

Autoguider

Library

Guider

Telescope VI

PMAC PCOMM/

PTALK Lib calls

Telescope Dome Shutter

Dome VI

Dome

Lib

Virtual

Console

Panel

Engg.Cons

Software/Hardware Architecture for 30” Telescope, VBO, Kavalur

Operational Modes: Each Sub-system works in two modes viz.

Independent/Local Mode And Remote Operation mode

Independent Mode: The Telescope and dome are controlled by the system

which houses the telescope control hardware(Turbo PMAC). This mode

is also called Local Mode.

The operations are initiated through a GUI called virtual control panel(VCP);

The user inputs are accepted in the form of coordinate positions(RA and

DEC). This mode is useful for independent testing of Telescope and

Dome operations.

Remote Mode: An Observatory server gets user inputs and triggers the

telescope and dome operations, it acts as a repository of all status

information from various subsystems, which are periodically updated.

Features of Observatory server:

1. It works on TCP/IP sockets

2. Concurrent server

3. Multi-threaded program

4. Uses Message passing paradigm

5. Variable ASCII message size with upper limit of 512 bytes.

6. It is suitable for limited volume data and not for bulk data like image data.

7. Can communicate with clients working under Window NT, Windows XP, Linux, Solaris,

QNX.

Telescope Control Server:

The telescope control software runs as a multithreaded application. The application gets

commandeered from the observatory server, user interface is through linux UI and, gets

input from METs and the Autoguider systems. The Telescope control server houses the

PMAC board(Programmable motion control boards from DeltaTau).

Dome Control Server:

The Hardware used for control of dome is a siemens inverter to drive the AC

motors, and the scheme planned is very similar to 2M Dome.

Tools that are available for programming PMAC are

1. PEWIN32 – testing the PMAC interactively from command prompt

2. PCOMM32 – programming using VC++ under Window NT.

Status

The Design of Observatory server is in progress, Telescope control and

Dome control software in local/autonomous mode is developed and

ready for testing.

