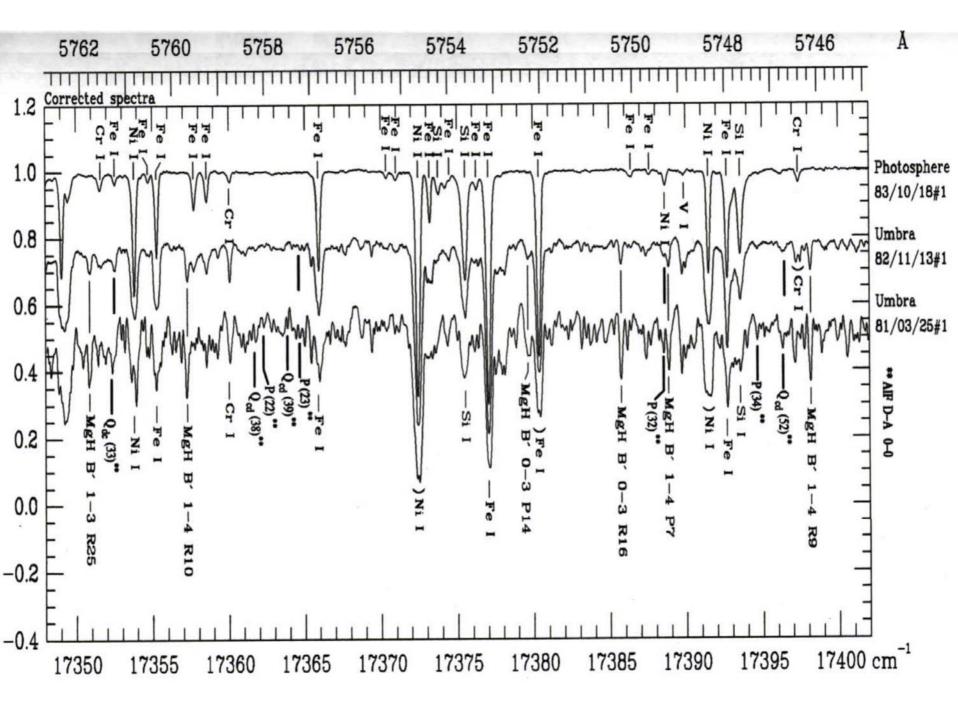
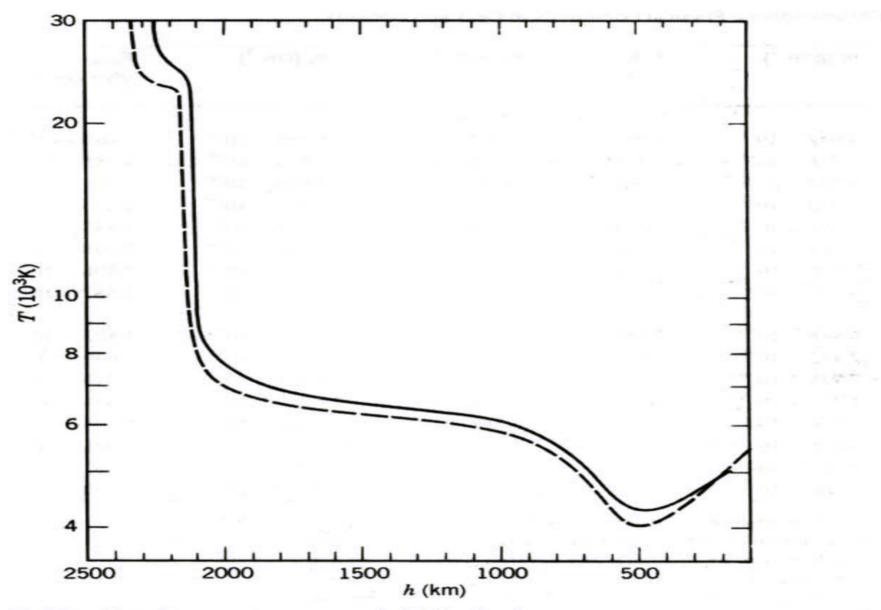

MOLECULAR LINES IN SUNSPOT SPECTRA


S.P. Bagare In-house meeting of I I A 17 – 18 April, 2006


Work carried out by K.Balachandra Kumar for Ph.D. thesis submitted by the end of 2005 to Madurai Kamaraj University.

Molecular transitions

- Electronic transitions in the visible rotational lines of the vibrational bands resolved in the high resolution FTS spectra of solar atmosphere – obtained at KPNO – NSO digital archive
- Pure vibrational and rotational lines in the infra red and radio regime

Fig. 9-7 Plot of temperatures versus height in the chromosphere for the cells (dashed) and network (solid). Adapted with permission from J. Vernazza, E. Avrett, and R. Loeser, *Astrophys.* J. Suppl., **45**, 635 (1981).

MOLECULAR LINE OBSERVATIONS

- Temperature and pressure fluctuations in the photosphere
- Imaging of T-min region
- Intensity oscillations in active regions
- Evershed flow in penumbrae
- Excitation temperature layer of formation
- Isotopic abundances
- G band (CH at 4310 A), excellent proxy for magnetic features. CN at 3883 better contrast !

Diatoms in sunspot umbrae

- Rowland(1895) to Wallace & Hinkle(2001) identified and confirmed presence of CN, TiO, CaH, CH, MgH, AlH, and FeH
- Presence uncertain for CN, C₂ Swan, MgO, ZrO, VO, CrH, etc.
- Search negative for BH, BN, BO, etc.
- Wohl (1971) extensive search

Prerequisites for identification

- Reliable vibrational and rotational analysis data providing the molecular constants
- Frank Condon Factors transition probabilities
- High resolution umbral spectra

Present study

- Search for AIF transitions, suspected to be present by Wohl (1971)
- Transition probabilities significant as determined by Murty (1977), Joshi et al. (1982), Kumar, Rajamanickam & Bagare (2002), Kumar, Bagare & Rajamanickam (2003, 2004) for 13 electronic transitions
- Searched for 1497 lines due to 11 band systems of 5 electronic transitions in the range of 4400 – 9000 A

Methodology

- Lines classified as present, shoulder, merged (strong atomic or other molecular line present) or doubtful (difference from laboratory wavelength higher than 0.02 A)
- Present plus shoulder taken as identified

Method of coincidence

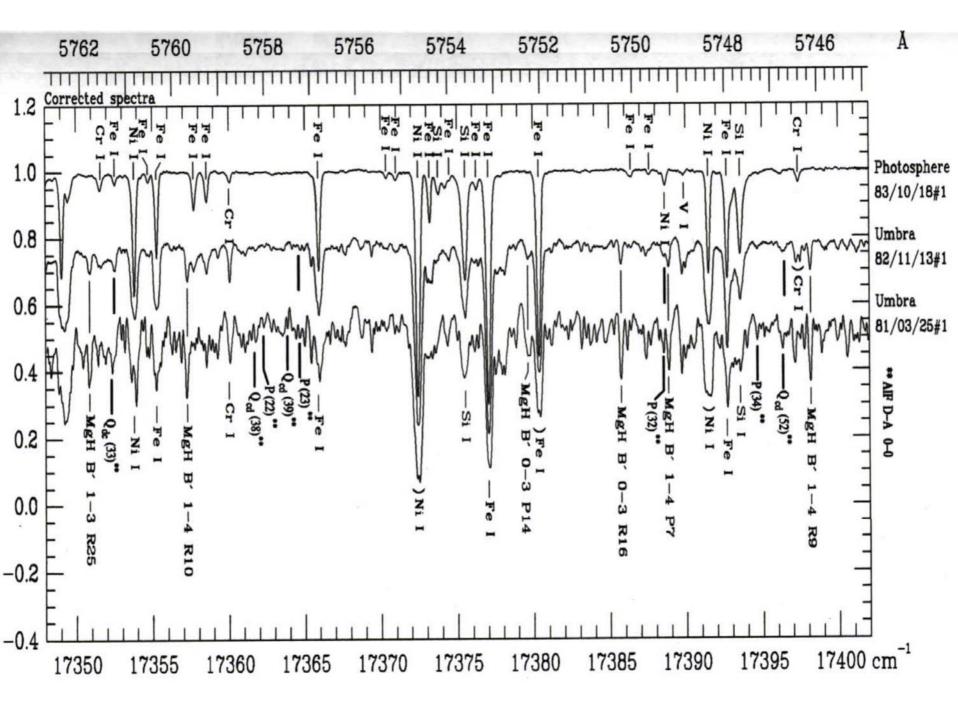
• In order that identifications are not statistical coincidences only, we define

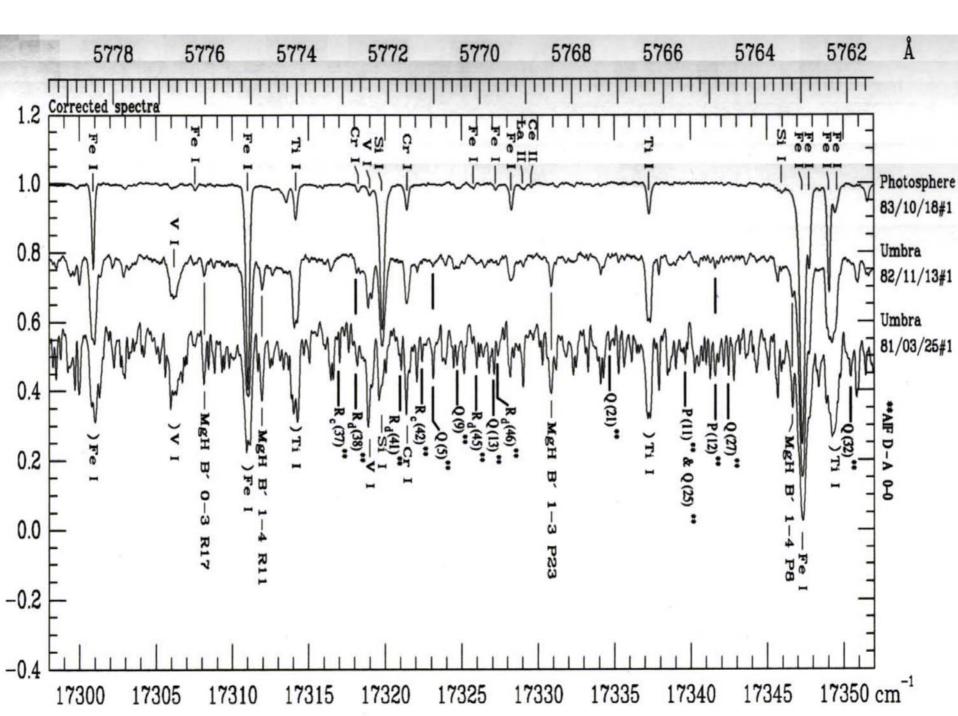
$$C=N\left[1-\left(1-2x/X\right)^{M}\right],$$

- N total number of lines present
- X width of region in A
- M number of lines searched for
- x tolerated departure in A (0.02)

Complementary test

 Intensity distribution in P, Q, and R branches, and the pattern of peaking of absorption maximum studied for confirmation of identification


Table I Parameters to evaluate the presence of AIF transitions


Transition	Band	FCF 0.717	C-index 49	I-parameter*	
C-A	(0,0)			64 (208)	
	(0,1)	0.234	16	34 (121)	
	(0,2)	0.043	18	69 (120)	
	(1,0)	0.241	42	27 (130)	
	(1,1)	0.312	41	28 (158)	
	(1,2)	0.320	24	35 (104)	
D - A	(0,0)	0.814	09	86 (139)	
	(0,1)	0.165	38	68 (108)	
F - A	(0,0)	0.674	63	65 (199)	
G - A	(0,0)	0.527	33	48 (092)	
F - B	(0,0)	0.945	41	78 (118)	

Line	λÅ	Line	λÅ	Line	λÅ
Q83	7117.73	R40	7188.74 ^S	Q27	7229.40 ^S
Q82	7120.73	R39	7190.75	P47	7231.11
Q81	7123.70	Q49	7199.20 ^S	P45	7233.27
R66	7123.98 ^S	P68	7199.32 ^S	Q20	7235.40
Q79	7129.52 ^S	Q48	7200.96 ^S	Q18	7236.78
R63	7132.66 ^S	P65	7204.90	R7	7236.93 ^S
R61	7138.26 ^S	Q44	7207.60	Q17	7237.40
Q72	7148.78	P63	7208.43 ^S	P36	7241.11
Q69	7156.46 ^S	Q43	7209.16 ^S	Q6	7242.10
R54	7156.80	R27*	7212.22	Q4*	7242.46
Q68	7158.95 ^S	Q41	7212.22	P34*	7242.46
Q67	7161.41	R25	7215.37 ^S	Q3	7242.63 ^S
Q66*	7163.82	R24	7216.85 ^S	Q2	7242.73
Q65	7166.18	Q37	7217.83 ^S	P3	7244.48
Q64	7168.53 ^S	Q36	7219.16 ^S	P29	7245.40
R49	7168.98 ^S	R21	7221.12	P5	7245.40
R48	7171.32	R18	7225.08	P26	7246.31
R46	7175.89 ^s	P52	7225.08	P22	7247.37
Q59	7179.66	Q31	7225.21	P12	7247.48 ^S
R44	7180.30	R16	7227.57 ^S	P21	7247.55
R43	7182.46 ^S	P50	7227.57 ^S		
Q57	7184.02 ^S	R15	7228.73		

Table II Rotational lines identified for C-A (0,0)

Note: Lines marked * in Tables II to XI, could not be measured accurately during rotational analysis by Naudé and Hugo (1953, 1954). The lines marked ^S in Tables II to X lie on the shoulder of a strong atomic or other molecular line.

D -	- A (0,0)		D - A (0,1)			
Line	λÅ	WmÅ	Line	λÅ	WmÅ	
$Q_{dc}55^*$	5743.72	06.0	Q _{dc} 49	6018.74	17.6	
$Q_{cd}55^*$	5743.81	11.5	P29 & P28	6025.90	13.6	
Qcd52	5746.72	12.2	Qcd42	6026.37	04.9	
P34*	5747.32	09.2	Qcd41	6027.42	09.7	
P32*	5749.27	13.9	P23	6031.08	05.4	
P23	5757.17	10.1	P22 & Q36	6032.01	10.5	
P22	5757.96	07.3	P17	6036.46	18.4	
$Q_{cd}38$	5758.13	10.3	P12	6040.33	15.9	
$Q_{cd}33$	5761.30	13.0	Q16	6044.47	10.4	
Q32*	5761.91	18.5	Q12	6045.84	06.6	
Q27	5764.58	08.4	Q4	6047.42	06.5	
P12	5764.91	08.4	R32	6048.75	08.0	
P11 & Q25	5765.52	07.4	R23	6050.93	11.8	
Q21	5767.20	04.7	P39*	6237.60	12.3	
R _d 46	5769.64	07.9	P34*	6244.49	11.6	
Q13	5769.67	08.2	P31*	6248.34	07.7	
R _d 45	5770.09	08.8	P30*	6249.56	22.0	
Q9 & R _d 44*	5770.51	09.4				
Q5	5771.05	10.6				
R _C 42	5771.26	05.4				
R _d 41	5771.71	07.4				
R _d 38	5772.71	09.4				
Rc37	5772.97	03.3				

Table XI Estimated equivalent width values for D-A (0,0) & D-A (0,1)

and the second se

$log(W/J) = const. - \frac{Bhc}{2.3kT}J(J+1),$

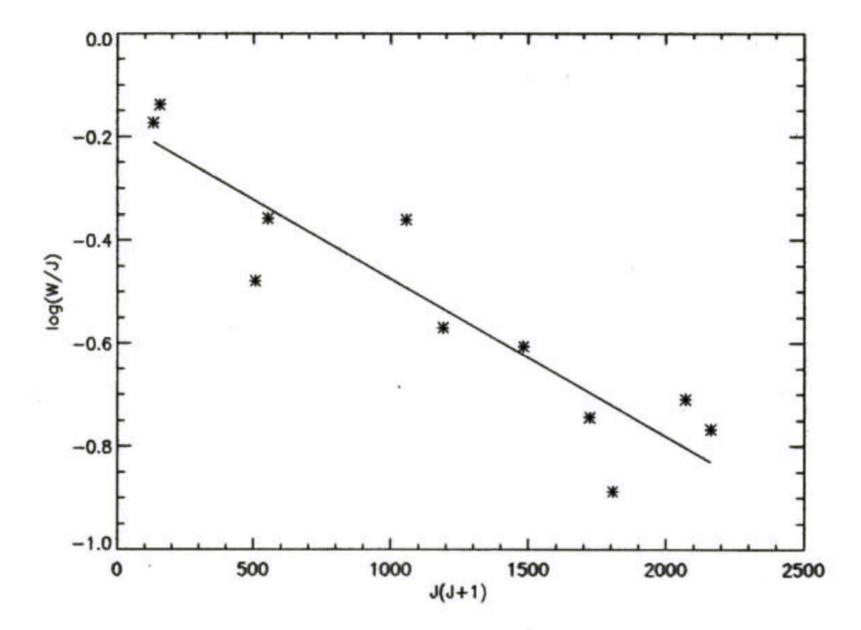


Fig. 3 Plot of J(J+1) versus log(W/J) for D - A (0,0) band of AIF. Only the P and R branch lines are used, as described in the text.

Effective rotational temperature

- Reported values of umbral T use mostly the observations of TiO, MgH, and FeH
- Present values in the range of 1740 to 4800 K
- 1240 ± 120 K for D − A (0,0)
- 2390 ± 400 K for F − A (0,0)

Conclusions

- Over 600 lines due to 11 bands of AIF identified and confirmed
- Effective rotational temperature estimated for relatively `cool' umbra
- A 10 Å region identified with predominantly AIF lines present – potential diagnostic window for T and oscillation study (low scatter from neighbouring photosphere)
- Need for T modeling of umbrae