Fluorine Abundances in Cool Extreme Helium Stars

Scenarios proposed as the potential sources of F

Explosions of Type II supernovae (SNe), by the process referred to as v(nu)-process, can convert 20Ne into 19F (Woosley & Haxton 1988).

Stellar winds from Wolf-Rayet (W-R) stars (Meynet & Arnould 2000).

The third dredge-up of asymptotic giant branch (AGB) stars (Forestini et al. 1992).

- The reaction chain for F production in W-R stars and AGB stars is
 - 14N(α,γ)18F(β +)180(p,α)15N(α,γ)19F, where protons are liberated through 13C(α,n)160 followed by neutron captures, 14N(n,p)14C.
- To discriminate between the three possible scenarios of F production accurate measurements of F abundances in these objects are needed.
- Extreme helium (EHe) stars are suggested to have gone through AGB phase in its earlier evolution, hence, F should be present in their atmospheres.
- Presence of F in EHe's atmosphere can serve as test bed for F production in AGB stars.

Measurements of F abundance

- Hall & Noyes (1969) measured F abundance from their identification of the fundamental vibrationrotation band of HF in sunspot spectra at 2.3µ.
- In red giants by Jorrissen et al. (1992), infrared HF vibration-rotation transition were used. They found enhanced F in C-rich stars, providing evidence of F production in AGB stars.

Jorrissen et al's results were supported by observations of F V and F VI absorption lines in the far-UV spectra of hot post-AGB stars (Werner et al. 2005).

- F I λ955 interstellar absorption in two sight lines towards the Cep OB2 association using Far Ultraviolet Spectroscopic Explorer (Federman et al. 2005). No evidence of enhanced F resulting from the v(nu)-process in Type II SNe.
- Zhang & Liu (2005) determine F abundances from the [F II] λ4789 and [F IV] λ4060 nebular emission lines for a sample of PNe. F is abundant in PNe – evidence of F synthesis in AGB stars.

Searching For F I lines in cool EHes

FI lines from 3s - 3p transition array detected in the spectra of the analysed stars. The FI lines used in abundance determination for all the analysed stars are shown in **bold**

RMT	λ	χ	$\log gf$	Contributors
	(Å)	(eV)		
1	7482.72	12.73	-0.66	F I, C I λ7483.445Å (red wing), Fe II λ7482.777Å (weak)
	7514.93	12.75	-0.96	FI
	7331.95	12.70	-0.11	F I, Fe II λ7332.115Å
	7425.64	12.73	-0.19	F I, Fe II λ7425.095Å
	7552.24	12.73	-0.34	FI
	7573.41	12.75	-0.34	FI
2	6856.02	12.70	+0.44	F I, Fe II λ6855.646Å
	6902.46	12.73	+0.18	FI
	6909.82	12.75	-0.23	FI
	6773.97	12.70	-0.40	F I, Fe II λ6774.473Å (red wing)
	6834.26	12.73	-0.21	FI
	6795.52	12.73	-1.09	FI
4	7754.70	12.98	+0.24	F I, Ti II λ7755.751Å (red wing)
	7800.22	13.03	+0.04	F I, Si I λ7799.996Å (weak), Fe II λ7801.235Å (red wing)
6	7037.45	12.98	+0.10	FI
	7127.88	13.03	-0.12	FI
	6966.35	12.98	-1.01	FI
	7202.37	13.03	-0.33	F I, C I λ7202.267Å

LS IV -1 2

Final F abundances

FQ Agr LS IV -14 109 LSS 3378 BD -1 3438 LS IV -1 2 **KS** Per Sun

6.5 + / - 0.146.6 + / - 0.197.4 +/-0.20 6.4 + / - 0.147.2 +/-0.10 < 4.44.53

- 19F is synthesized and then dredged upto the surface during the He-burning thermal pulses.
- I9F abundances can in principle be used to probe the neutron source in EHes, since 19F(α,p)22Ne did not destroy 19F.
- The rate for 19F(α,p)22Ne is about 20 times faster than 22Ne(α,n)25Mg in the T_8 = 2.0 - 3.5K temperature range, 19F cannot survive in layers where neutrons are being liberated by 22Ne(α,n)25Mg.
- Hence 22Ne(α,n)25Mg is not the source of neutrons in cool EHes, instead, 13C(α,n)16O is the neutron source.

THANK YOU.