Exploring the Disc Accretion Process in Classical T Tauri Stars

Padmakar Singh Parihar P. Bama Vannia Rajan

CREST, Indian Institute of Astrophysics, Bangalore India

The Classical T Tauri stars

1. CTTS are Low mass PMS.

- 2. CTTS are surrounded by thick flared accretion disk.
- 3. Disk mass funnel through dipolar magnetic fields with free fall velocity(magnetospheric accretion model).
- 4. The broad emission lines come from accretion column. Outflow in the form of wind/ jets also noticed in few CTTS.
- 5. Near star surface shock forms and dissipates the kinetic energy of the inflow and makes hotspots(ring).
- 6. The blue excess emission found in optical spectrum is due to hot spots(rings).

The Classical T Tauri Stars

Excess NIR/IR emission comes from inner and outer disk.

The inner disk can be warped by non-aligned dipolar magnetic fields.

Other than hot spots, large fraction of stellar surface could be covered by cool spots.

The Scientific Motivations

1.Variation of accretion rate with age: crucial to understand formation of planets.

2.Exploring long(Exor) &

short term variations in.

3.Accurate measurment of disk and interstellar extinction.

4. Use of temporal variation in the disk extinction to explore the distribution of disk mass close to star.

Observations

- 1. The optical spectroscopic and photometric observations are carried using HFOSC of HCT.
- 2. Photometry in UBVRI band passes.
- 3. Spectroscopy with Gr7, Gr14 & Gr8 grisms, which covers entire optical spectrum (3600-9100A).
- 4. The typical average S/N of spectroscopic observations are >150.
- 5. Other than CTTS, large number of WTTS and Giant stars are observed to model CTTS photosphere (templates).

Classical Ta	uries
DF Tau	M1
DN Tau	M 0
VY Tau	M 0
DR Tau	K7
BP TAU	K7
V1121Oph	K5
V866 Sco	K0
DI Cep	G8

Template stars						
San1 LkCa7 V819Tau V836Tau HD139153 HD144542	WTTS M1.5 WTTS K7 WTTS K7 WTTS K7 Giant M1.5III Giant M1III					
HD139669	Giant MK5III					
HD100006 HD158133	Giant K0III Dwarf K0V					
110130133						

Observations

Magnetospheric accretion (Modeling the Optical Spectrum)

Calvet & Gullbring (1998)

The Magnetospheric Modeling Technique

Based on:

Physical model proposed by : Calvet & Gullbring (1998) Technical approach opted from : Chelli (1999)

 $O_c(\lambda) = p_o 10^{-0.4 f(\lambda) A_v} \left[S(\lambda)(1-f) + E(\lambda) \right] w(\lambda))$

 $E(\lambda) = fB_{\lambda}(T_{eff}) + Emission from post and preshock regions$

$$\begin{split} T_{eff} &= \left(\frac{7.35}{\sigma} 10^{10} \left(\frac{\dot{M}}{10^{-8} M_{\odot} y r^{-1}}\right) \times \left(\frac{M}{0.5 M_{\odot}}\right) \times \left(\frac{R}{0.5 R_{\odot}}\right)^{-3} \times \left(\frac{f}{0.01}\right)^{-1}\right)^{\frac{1}{4}} \\ \chi^{2}(p_{o}, A_{v}, \dot{M}, f) &= \sum_{i=1}^{N} \left(\frac{(O_{c,i}(p_{o}, A_{v}, \dot{M}, f) - O_{i})^{2}}{(\sigma_{o,i}^{2} + \dot{\sigma}_{s,i}^{2})}\right) \end{split}$$

$$\dot{\sigma}_{s,i}^2 = p_o^2 10^{-0.8f(\lambda)A_v} \sigma_{s,i}$$

Testing the model

1. 100 CTTS data sets are simulated using the physical model and the template spectrum.

2 The magnetospheric modeling technique is applied to these synthetic data and parameters are retrieved.

3. The difference between the modeled parameters and original one is plotted.

4 Reliability of the modeled parameters are checked with different template & CTTS S/N.

Results from modeling optical spectrum

Results from modeling optical spectrum

DF TauHD139669 0.27 0.005 2.82 9070 11.70 0.45 0.023 1.77 $ 11.00$ BP TauHD139153 0.86 0.007 10.94 11853 12.17 0.51 0.007 2.88 $ 11.50$ DN TauHD139669 0.27 0.005 2.82 9080 11.72 0.45 0.005 0.03 $ 10.50$ V1121OphHD139669 0.40 0.016 1.22 5649 10.88 DR TauHD139669 1.29 0.064 11.70 6975 11.25 I.20 0.05 3.0 $ 11.5$ DI CepHD100006 0.63 0.013 3.61 7809 11.45 $ 0.025$ 2.50 $ 12.00$ V853 OphHD139153 1.00 0.014 13.50 10525 11.96	CTTS	Temp	Av	f	Mdot	Teff	curl(f)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DF Tau	HD139669	0.2	7 0.00	05 2.82	907() 11.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BP Tau	HD139153	0.45 3 0.8	0.023 6 0.00	1.77)7 10.94	- 1 1185	11.00 53 12.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DN Tau	HD139669	0.51 0.2	0.007 7 0.00	2.88)5 2.82	- 2 908	11.50 0 11.72
DR Tau HD139669 1.29 0.064 11.70 6975 11.25 DI Cep HD100006 0.63 0.013 3.61 7809 11.45 V853 Oph HD139153 1.00 0.014 13.50 10525 11.96	V1121Oph	HD139669	0.45 0.40	0.005	0.03 1.22	- 5649	10.50 10.88
DK TauHD139009 1.29 0.004 11.70 0973 11.23 1.20 0.05 3.0 - 11.5 DI CepHD100006 0.63 0.013 3.61 7809 11.45 - 0.025 2.50 - 12.00 V853 OphHD139153 1.00 0.014 13.50 10525 11.96		LID120660	-	-	-	-	- 11 05
DI Cep HD100006 0.63 0.013 3.61 7809 11.45 - 0.025 2.50 - 12.00 V853 Oph HD139153 1.00 0.014 13.50 10525 11.96		пD139009	1.29	0.064	3.0	-	11.23
V853 Oph HD139153 1.00 0.014 13.50 10525 11.96	DI Cep	HD100006	0.63	0.013 0.025	3.61 2.50	7809	11.45 12.00
	V853 Oph	HD139153	1.00	0.014	13.50	10525	11.96

Calvet & Gullbring (1998), Gullbring et.al (1998) Gullbring et. al (2000) Gamiero; Folha & Petrov (2006)

Results (DF Tau)

Nearly 70 nights data, stretched over 2 years

Variation in accretion diagnostic lines.

Intra night variation:

Results (DF Tau)

The Future Plan

→ Observing large sample of CTTS and exploring the disk accretion process.

→ Further improvement in the modeling of optical spectra

1) Accurate calculation of the CTTS excess emission coming from heated photosphere.

2) Using CLOUDY to generate optical emission coming from pre-shock region.

 Exploiting the accretion information stored in various emission diagnostics lines.

