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2D MODEL OF PARTICLE MOTION

« We assume pulsar magnetic field is mainly dipolar.
The field lines are projected on to the equitorial
plane (2D plane). The field lines are approximated
to be straight lines.

« The equation of motion is given by Gangadhara
(1996). Consider it’s radial component:

d { dr o6
7 (ma) = m{*r (1)

Relativistic mass of particle: m = mgy

Lorentz factor

r=dr/dt
Particle angular velocity: ' = Q1 — (82/r?),b = d; cos

we rewrite Eq. (1) as
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The solution of the 2D equation:

¢ The particle parameters such as 3,~,p, and the ra-
diation parameters such as Stokes parameters: I,

Q, U and V are computed.

( Thomas, R. M. C., Gangadhara, R. T. 2005, A& A, 437, 537 )



Figure 1: The coordinate system in which the particle motion is congidered. The curve BG)

reprsents the particle trajectory in the -y plane,
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3D MODEL OF PARTICLE MOTION

e The radial equation of motion considering the dy-
namics of particle in r, ¢ and ¢ coordinates are

derived from the following classical equation.
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e Then the component of centrifugal force in the e, di-

rection is given by

2
F.=m [%) Qx (FxQ)=mrsnf [%} €p s
(7)

e The equation of motion in the radial direction reduces

to

d dr dg'\* .2 (AP g
%[’mﬁ)—mr [E] —mr sin“f [E) =0. (8)



SOLUTION OF EQUATION OF MOTION

e The equation of motion is split into zeroeth and
first order equations and the resultant solutions are

added appropriately
e Perturbative solution

r=ro+ €T+ €., (9)

and

r=rg+ €7+ . o (10)

o e=1L/Te

Thus we expand
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In our previous work we have found out a solution to the

zeroth order equation:

e

en(A — Qot) (13)

o=
nl)

and to the first order equation, the solution is
2K mne
ry=—y [ T—dt ——dt 14
1 ylf - + Y2 [ 0 ’ ( }
and

= exp[-Qut’ +/Qut|,
—oxp [-Q1 2 — (Qut], (15)
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RESULTS OF 3D MODEL

7 =r(t){sin @ cos ¢, €, +sin @ sin ¢, é, + cos' €.} ,

(16)

e The curvature radius of particle trajectory can be esti-

mated using the following expression

bl

Fxal”’

P (17)

e The maximum wvalue that radius of curvature can

reach is
rL/(2 sina)
[
C o . —II.-"E
P R [4 + (csc“a — 1) sin [flm{}f}] .
5}mﬂ'
4
Pi R =A/TTe . (18)
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e Estimation of power emitted for a pulsar with a = 90°
at an altitude of r = 0.002ry (a presumed emission
height for core component in normal pulsars) and for
a field line with r. ~ 10007, we get p; = 1.97, and
Pin F2rcf2.

1
P ox —

P
Thus more than an order of magnitude difference be-

tween p; and py, .

e Emission from the field lines close to magnetic axis
can be explained only if rotation is taken into ac-

count
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CORE EMISSION HEIGHT OF
PSR B2111+46

e Devised a new method to estimate the core emission

heights from the intensity and polarization data.

e Analyzed the multifrequency data for Intensity and po-

larization
e Radius to Frequency mapping for the core heights found

e The o and 3 have been found out from the 2 fitting of
BCW curve ( Bleaskeiwicz, Cordes, Wasserman :1991).
Absolute emission heights of the conal components es-

timated.
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Table 1:  The parameters in relevanoe

COre COmponents

Frequency
{MHz)

4850

1408

925

610

408

333

b

(deg)
- 23413
-0 90004
-L244-0.07
-L 60005
-2.02:0.10

-2 46:410.10

fin
(deg)
0. 234017
0. 9940104
1.244-0.17
1. 60=:4).05
2.02::0.20

2. 464020

bo the emission gesmetey of pulsar B21114+46 for the

Sibeone
(deg)
0.11::0.06
0.50-+0.02
0.62::0.04
0.80-£0.02
1.01::0.06

1.2340.06
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Tom
(Kum)
91423

395406
402418
63507
804422

O7RL30

LT

(.14 =0.03
(.88 £0.01
(173 0,03
.94 £0.01
L1194 003

1. 454 (.03

i

76258
T62-+04
822400
TEO-E03
T20L06

69005

5/ 8

0. 43040054
(.2060.002
(1.1850.0403
(1.1630.001
0.14540.002

(.131+0.001
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CONCLUSION

e We have developed a model for the charged particle
acceleration in pulsar magnetospheres including the ef-

fects of rotation, valid for the radio emission region.

e The pulse profile of PSR B2111+46 is analyzed. Our

model is found to match with observational results.

e Based on the 3D model, a detailed simulation of Inten-
sity and polarization polarization profile is being cur-

rently worked on.

21



	Pulsar 

