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Q Wavelength: UV => Ultraviolet 1 € [465,1550] A

Size: Compact=>L < 1”

Duration: Characteristic times between tens of seconds to ~1 hour

Intensity: Bright structures. Sometimes a factor 100-1000 than their surroundings.

Motion: UV bursts track dynamics of photospheric magnetic features (v < 10 km/s)

No relation to flares: Important to distinguish them from compact kernels related to flare ribbons
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« How UV bursts look like?

- Image: roundish compact bright structures in SJI 1400

- Profile: Si IV lines are very wide and show narrow absorption lines superimposed

Si IV E
1393760

10

IRIS slit jaw image
@ 1400 A

Peter et al. (2014)
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(e) IRIS SJI 1330 A (f) IRIS SJI 1400 A

 Where to find UV bursts?

brightenipgs

Emerging flux regions (EFRS)

Moving magnetic features (MMFs)

. | hght brid.?(;‘< N N

Light bridges (LBs) Bl . A
" N O J

- > o

Toriumi et al. (2015)




Introduction

* Which phenomena are usually related to UV bursts?

Intensity {counts) Intensity {counts)
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- Ellerman Bombs (EBs):
substantial brightenings of the (8) SIM4400
extended wings of Ha s e g
without core brightening

60

- Surges:
non collimated ejections
of chromospheric plasma
typically observed in Ha
with velocities of < 50 km/s n”
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Nébrega-Siverio et al. (2017)
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Modeling UV bursts: 1D experiments

* Could modified EB models produce UV emission?

« Semi-empirical model by Fang et al. (2017) and radiative-hydrodynamic
simulations by Reid et al. (2017) and Hong et al. (2017a,b).

« Scheme of these models:
- Setting a 1D stratification for an EB model.
- Synthesizing different lines (Ha, Ca |l 8542, or Mg |l h & k)



Modeling UV bursts: 1D experiments

* Reid et al. (2017)

« RADYN code
(Carlsson and Stein, 1997)
to get the stratification

« MULTI code
(Carlsson 1986)
to synthesize Ha and Ca Il

* RH code (Uitenbroek 2001)
to synthesize Mg Il h & k
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Modeling UV bursts: 1D experiments ®

* Could modified EB models produce UV emission?

« Semi-empirical model by Fang et al. (2017) and radiative-hydrodynamic
simulations by Reid et al. (2017) and Hong et al. (2017a,b).

« Scheme of these models:
- Setting a 1D stratification for an EB model.
- Synthesizing different lines (Ha, Ca |l 8542, or Mg |l h & k)

 Result:

It was not possible to reconcile UV profiles with the profiles of EBs
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Modeling UV bursts: 2D experiments

* Innes et al. (2015)
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Modeling UV bursts: 2D experiments

Other 2D models of reconnection in current sheets:

- Ni et al. (2016): Single fluid. Radiation cooling, heat conduction and ambipolar diffusion included.
Both the high temperature (8%x10* K) and low temperature (~10* K) magnetic reconnection events can
happen in the low solar atmosphere.

- Ni and Lukin (2018), Ni et al. (2018): Multifluid using HiFi.
Nonequilibrium ionization/recombination plays a critical role in the structure of the reconnection region.
When B is lower than 0.0145, weakly ionized plasma can be strongly heated to above 2.5x104 K.

- Peter et al. (2019): Model inspired in the observations by Chitta et al. (2017).

Through a plasma-f3 study, the authors conclude that
temperatures in the reconnection region should not reach values significantly above 10° K

None of these models contain forward modeling



Modeling UV bursts: 2D experiments

* Nobrega-Siverio et al. (2017)

- Model: Magnetic flux emergence experiment
using the Bifrost code (Gudiksen et al. 2011)

- Aim: To provide theoretical support to
the relationship between UV bursts, surges j ‘\\\ \ |
and magnetic flux emergence surge N \

dome

- Result: Several features of IRIS observations
can be obtained with this model

Nébrega-Siverio et al. (2017)
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Modeling UV bursts: 2D experiments

Gray mask: € < 1071 CGS

* Noébrega-Siverio et al. (2018)

- Model: Nobrega-Siverio et al. (2017)

- Aim: To study the NEQ ionization/recombination
of SilVand O IV

- Result: The NEQ ionization has a massive impact
on the reconnection site and the surge. The SE
seriously underestimates the number density values

_ NSE—NNEQ
r = , v € |[—1,1]
nSE +nNEQ Nobrega-Siverio et al. (2018)
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Modeling UV bursts: 3D experiments
e Hansteen et al. (2017) SST/CRISP Ha -0.15 nm

- Model: Magnetic flux emergence experiment:
non-twisted horizontal flux sheet emerges
in @ weekly magnetized corona using
the Bifrost code (Gudiksen et al. 2011)

Bifrost Ha -0.20 nm

- Aim: Getting new insights concerning ’
EBs and UV bursts.

- Synthesis:
MULTI3D (Leenaarts and Carlsson 2009)
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RH1.5D (Pereira & Uitenbroek 2015) X [um)

Hansteen et al. (2017)
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t = 28000 s t = 61000 s t = 82200 s

 Hansteen et al. (2019)

[Mm]

- Model: Magnetic flux emergence experiment: &
untwisted horizontal flux sheet emerges
In a strong magnetized atmosphere using
the Bifrost code (Gudiksen et al. 2011)
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- Aim: Getting new insights concerning
EBs and UV bursts.
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- Synthesis:
MULTI3D (Leenaarts and Carlsson 2009)
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Hansteen et al. (2019)
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Conclusions

UV burst models

- have allowed us to study
essential physical mechanisms
involved in the UV burst formation

(non-stationary magnetic reconnection, plasmoid instability, heating,...)

- have found many striking agreements
with observations

(relation to magnetic flux emergence, EBs and surges, explanation )




Conclusions ‘

* Forward modeling

- links theory to observations via the
spectral synthesis of our numerical data

- Is essential to provide theoretical support
and interpret observations




