Multi-layered Kelvin-Helmholtz Instability in the Solar Corona

Ding Yuan

Email: yuanding@hit.edu.cn

Harbin Institute of Technology, Shenzhen

Collaborator: Yuandeng, Shen, Yu Liu, Xueshang, Feng, Rony Keppens

06 Nov 2019 IRIS-10 workshop at Bangalore, India

Kelvin Helmholtz Instability

- Convert energy from large-scale to small scales;
- Mix fluid of different properties.
- Dynamic energy to thermal energy

Kelvin Helmholtz Instability

- Convert energy from large-scale to small scales;
- Mix fluid of different properties.
- Dynamic energy to thermal energy

Linear theory on KH instability in magnetized incompressible plasma

Chandrasekhar 1981

Assumptions:
Small-amplitude perturbation
Incompressibility

Suzuki et al. 2014 ApJ 787 169

$$\omega = \frac{\mathbf{k} \cdot (\rho_1 \mathbf{V_1} + \rho_2 \mathbf{V_2})}{\rho_1 + \rho_2} \pm i \sqrt{\rho_1 \rho_2 \bigg([\mathbf{k} \cdot (\mathbf{V_1} - \mathbf{V_2})]^2 - \frac{(\mathbf{k} \cdot \mathbf{B_1})^2 + (\mathbf{k} \cdot \mathbf{B_2})^2}{4\pi \rho_{12}} \bigg)}$$

KHI in the solar corona -Ofman et al. ApJL 2011

- Series of vortices were formed along the interface between an erupting (dimming) region and the surrounding corona.
- Size: 1- 10 arcsec
- Propagation speed (Sub-sonic): 6-14 km s⁻⁷

KHI at a flank of erupting CME

-Foullon et al ApJL 2

Ejecta speed: ~ 800 km/

Phase speed: ~ 400 km/s

Period: ~40 s

Wavelength: ~18 Mm

KH instability by colliding flow -- Fang et al ApJ 2015, 2016

- Interaction of plasma flows evaporated from loop footpoints;
- Instability against aligned magnetic field

KH instability by colliding flow --Fang et al ApJ 2015, 2016

- Interaction of plasma flows evaporated from loop footpoints;
- Instability against aligned magnetic field

KH instability by colliding flow --Fang et al ApJ 2015, 2016

- Interaction of plasma flows evaporated from loop footpoints;
- Instability against aligned magnetic field

Dissipation by magnetic reconnection -- Fang et al ApJ 2015, 2016

- Magnetic islands formation;
- Energy dissipation by reconnection.

KHI in a coronal loop

Signature of heating

Li, Xiaohong, Sci. Rep. 2018

NVST observation Yuan et al 2019, ApLJ

Multi-layers of shearing flow

- KH instability develops at two plasma sheets.
- In a single bandpass, one could not observe both
- But they do interact with each other and provide an source of mass & energy.

2D MHD simulations

- Each interface develops KH instability of its own.
- No collective mode at this stage.

Acceleration & Energy gain

Number Density	Temperature	Energy gain	Wavelength
5.0±1.5 ·10¹0 cm -3	1.5±0.5 · 106 K	5.0 · 10 ¹⁷ J, about 100-1000 nanoflare	1~2.5 Mm

Summary

- Observation of Multi-layers of KH instability
- Sudden acceleration could be caused by coalescence of KH vortex.
- Current linear theory is not sufficient to describe the KH instabilities.
- Single narrowband filter observation could easily neglect component with high temperature contrast.
- Transparent or "Vacuum" ambient environment could be a good source of mass and energy.
- This could be found in prominence, coronal loops, spicule, jets, coronal hole etc.

