

Modeling the Solar Spicule Forest

Sahel Dey^{1,2}, Piyali Chatterjee¹, Robert Erdelyi ³

 1 Indian Institute of Astrophysics, 2 Joint Astronomy Programme, Indian Institute of Science, 3 University of Sheffield

Motivation

What are Spicules?

 Thin elongated spurting structures comprising of cold and dense chromospheric plasma

Why are they important?

Positive feature !

Motivation

What are Spicules?

 Thin elongated spurting structures comprising of cold and dense chromospheric plasma

Why are they important?

 Potential candidate for channeling mass and energy flux to Solar corona

Positive feature !

Motivation

What are Spicules?

 Thin elongated spurting structures comprising of cold and dense chromospheric plasma

Why are they important?

 Potential candidate for channeling mass and energy flux to Solar corona

Positive feature !

 Presence in a large no over the entire Solar surface like forest Solar Spicule forest in different filters of IRIS:top left in Si IV and top right in Mg II k filter Ca II H (A) Observation

Previous significant numerical works on Spicules : including convection

- Initial setup
 - Omain size
 - (I) 2d Run:
 - -18 Mm < x < 18 Mm
 - & -5 Mm < z < 44 Mm
 - (II) 3d Run:
 - -3 Mm < x < 3 Mm,
 - -9 Mm < y < 9 Mm &
 - -5 Mm < z < 32 Mm

- Initial setup
 - Domain size
 - (I) 2d Run:
 - -18 Mm < x < 18 Mm
 - & -5 Mm < z < 44 Mm
 - (II) 3d Run:
 - -3 Mm < x < 3 Mm
 - -9 Mm < y < 9 Mm &
 - -5 Mm < z < 32 Mm
 - Spatial resolution
 - (I) 2d coarse grid: 48 km
 - (II) 2d fine grid: 16 km
 - (III) 3d coarse grid: 48 km

- Included approximations^a
 - Magnetohydrodynamics
 - Local thermodynamic equilibrium
 - Sosseland mean opacity for radiative transfer
 - Anisotropic Spitzer's heat conductivity

^aChatterjee 2019.

- Included approximations^a
 - Magnetohydrodynamics
 - 2 Local thermodynamic equilibrium
 - Sosseland mean opacity for radiative transfer
 - Anisotropic Spitzer's heat conductivity
- Boundary Condition :Periodic horizontal extent, closed bottom & open top boundary
- ullet Background imposed \overrightarrow{B} field
 - 2D domain : Oblique and vertical orientation with strength of 25 and 74 G
 - 2 3D domain : Vertical field with strength of 5 G

5 / 18

^aChatterjee 2019.

Differential Emission Measure of synthetic spicule forest

•
$$\mathcal{D}\mathcal{E}\mathcal{M}:$$

$$\int \left(\frac{\rho}{\rho}\right)^2 \exp\left[-\left(\frac{\log(T/T_0)}{w}\right)^2\right] ds^{-a}$$

 $lackbox{}{\overline{
ho}}$: horizontal averaged plasma density,

$$T_0 = 10^4 \text{k \& } w = 0.78$$

^alijima & Yokoyama 2017.

Differential Emission Measure of synthetic spicule forest

•
$$\mathcal{D}\mathcal{E}\mathcal{M}:$$

$$\int \left(\frac{\rho}{\rho}\right)^2 \exp\left[-\left(\frac{\log(T/T_0)}{w}\right)^2\right] ds \ ^a$$

- $\overline{\rho}$: horizontal averaged plasma density, $T_0 = 10^4 \text{k} \& w = 0.78$
- Focus on chrosmospheric plasma within temperature range of
 6.4 × 10³ 1.5 × 10⁴K: similar feature like Ca II H filter
- s : line-of-sight distance (LOS)
- 2D setup : no LOS integration ! only single point

^alijima & Yokoyama 2017.

Spicules are following magnetic fields !!

- ullet Photospheric magnetic field : $|B_z| \approx 250$ 400 G after stabilization
- Overall spicules are tracing magnetic field lines

Figure: Differential emission measure of simulated spicules for $T=10^4\ K$

Effect of temperature and imposed fileds on sythetic spicules

• Analysis of 2 setups :

Effect of temperature and imposed fileds on sythetic spicules

- Analysis of 2 setups :
- Shock heating at outer envelope of spicules
- A horizontal slit is placed at z = 5Mm to track transverse motions
- Major differences in terms of spicule's properties: Oscillation amplitude, height and location of the spicules

How much spicules can ascend in upper amosphere? A statistical overview

• Favourable condition for reaching maximum height of the atmosphere

SI.	Run	T_{SL} (MK)	B _{imp} (G)	$N_{ m sp}$
1	2DC0.6MK25G	0.6	25.0	3384
2	2DC0.6MK74G	0.6	74.0	2038
3	2DC1.0MK25G	1.0	25.0	4620
4	2DC1.0MK74G	1.0	74.0	2167
5	2DC1.8MK25G	1.8	25.0	2662
6	2DC1.8MK74G	1.8	74.0	2907

¹Heggland et al., 2011.

How much spicules can ascend in upper amosphere? A statistical overview

- Favourable condition for reaching maximum height of the atmosphere
 - \bigcirc $|\overrightarrow{B}_{imp}|$: smaller strength
 - 2 T_{SL} : cooler atmosphere like Quiet sun phase¹
- Effect of temperature in mean height of spicules: almost linearly decreasing with temperature enhancement

SI.	Run	T_{SL} (MK)	B _{imp} (G)	$N_{ m sp}$
1	2DC0.6MK25G	0.6	25.0	3384
2	2DC0.6MK74G	0.6	74.0	2038
3	2DC1.0MK25G	1.0	25.0	4620
4	2DC1.0MK74G	1.0	74.0	2167
5	2DC1.8MK25G	1.8	25.0	2662
6	2DC1.8MK74G	1.8	74.0	2907

¹Heggland et al., 2011.

Photosphere in 3D setup

²shelyag et al., 2011.

No exception in 3D framework: Spicules are tracers of field lines

Dynamics of spicules & Differential Emission Measure

Oscillation modes of Chromospheric jets

- Complex motion of simulated spicules

Figure: Time distance plot of Differential Emission Measure of synthetic spicules

Oscillation modes of Chromospheric jets

- Complex motion of simulated spicules
 - Tranverse undulation Kink mode → quite prominent
 - Apparent twisting motion between vertical strand structures or line of sight integration effect

Figure: Time distance plot of Differential Emission Measure of synthetic spicules

Conclusions

- No. density of spicules is quite large, which mimics Solar Spicule forest structure
- A large fraction(0.20 0.43) of total spicules can reach more than 10 Mm height in upper atmosphere

Conclusions

- No. density of spicules is quite large, which mimics Solar Spicule forest structure
- A large fraction(0.20 0.43) of total spicules can reach more than 10 Mm height in upper atmosphere
- Magnetic field determines overall motion of Spicules
- In strong magnetic field and high atmosphere temperature, spicule's height reduces

 (A) Observ
- In presence of large magnetic field, Spicules appear assembling near internetwork region

Conclusions

- No. density of spicules is quite large, which mimics Solar Spicule forest structure
- A large fraction(0.20 0.43) of total spicules can reach more than 10 Mm height in upper atmosphere
- Magnetic field determines overall motion of Spicules
- In strong magnetic field and high atmosphere temperature, spicule's height reduces

 (A) Observ
- In presence of large magnetic field, Spicules appear assembling near internetwork region
- Realistic Solar like convection zone with mean frequency 2.16-3.51 mHz(time period of 4.5-7.5 mins) and average convective cell size of 1.4 Mm
- Transverse undulations(Kink modes) are dominating in Spicule dynamics
- Further analysis are required to determine the presence of Sausage, Torsional modes and their energy contribution.

- Viscosity(ν) = $1.0 imes 10^7 cm^2 s^{-1}$
- Hyper viscosity= $1.0 \times 10^4 cm^6 s^{-1}$. Source is completely numerical(dissipate maximum energy in the smallest scale)
- Shock viscosity= $5 \times 10^{15} cm^2 s^{-1}$. Only acts where shocks are generated
- Magnetic diffusion $(\eta)=1\times 10^7 cm^2 s^{-1}$
- Hyper Diffusion= $1.0 \times 10^1 cm^6 s^{-1}$. Source is completely numerical(dissipate maximum energy in the smallest scale)
- Shock diffusion= $5 \times 10^{14} cm^2 s^{-1}$. Only acts where shocks are generated
- Density diffusion= $4 \times 10^7 cm^2 s^{-1}$
- Thermal Diffusion= $1 \times 10^7 cm^2 s^{-1}$

• Initial conditions:

- Temperature and density stratification: From Model[S Christensen-Dalsgaard et al. 1996 for convection zone and Vernazza et al. 1981] and solution of hydrostatic balance equation with Saha-ionization equation respectively.
- Velocity field : Gaussian Noise
- **3** Background magnetic field: [0.0, 0.0, 5.0]G
- Grid Reynolds no $(R) = 4.54 \times 10^{1}$ (lower part of corona),1.31 × 10⁴ (convection zone)
- Grid Magnetic Reynolds no (R_m) = Same as Grid Reynolds no
- Grid Magnetic Prandtl no $(P_m) = 1.0$