Inferring the nature of Penumbral Microjets

Esteban Pozuelo, Sara
Institute for Solar Physics, Stockholm University (Sweden)
Instituto de Astrofísica de Canarias (Spain)
IRIS-10 Meeting

Penumbral Microjets (PMJs): Short-lived, small, bright jetlike transients with rise speeds of $100 \mathrm{~km} / \mathrm{s}$ in

10-20\% brighter than the surrounding penumbra

Length	$1-4 \mathrm{Mm}$
Width	400 km
Lifetimes	60 s

Adapted from Reardon (2013)

Magnetic reconnection in the photosphere: driver of PMJs?

Katsukawa et al. (2007)
Spine-Intraspine configuration
(Lites et al. 1993, Bellot Rubio et al. 2004; Langhans et al. 2005;...)

Adapted from Bellot Rubio et al. (2004)

$\begin{array}{lllll}0.4 & 0.6 & 0.8 & 1.0 & 1.2\end{array}$

Progressive heating to TR temperatures along the PMJs (Vissers et al. 2015) Hint of bi-directional flow produced by magnetic reconnection

Coronal signatures?

Scenario supported by the existence of:

- Lateral downflows with opposite polarity (Ruiz Cobo \& Asensio Ramos 2013; Scharmer et al. 2013; Tiwari et al. 2013)
- Tail downflows with opposite polarity (e.g., Tiwari et al. 2013; van Noort et al. 2013; Esteban Pozuelo et al. 2016)

Penumbral Jets (Tiwari et al., 2016)

(Normal) PMJs

Large PJs

- Faster apparent speed ($250 \mathrm{~km} / \mathrm{s}$)
- Wider than PMJs
- Brighter than PMJs
- Intermittent nature

Penumbral Jets (Tiwari et al., 2016)
| (Normal) PMJs

- Faster apparent speed ($250 \mathrm{~km} / \mathrm{s}$)
- Wider than PMJs
- Brighter than PMJs
- Intermittent nature

Tiwari et al. (2018)

Coronal signatures?

BDs could originate from a magnetic reconnection at low coronal heights

- PMJs are the downward counterpart reaching the chromosphere (Samanta et al. 2017)

Statistics on basic properties

Adapted from Reardon (2013)
k-NN algorithm
Detection of a great sample of PMJ on a penumbra
(Drews \& Rouppe van der Voort 2017)

Drews \& Rouppe van der Voort (2017)
$273 \mathrm{~s} \quad \mathrm{t}=312 \mathrm{~s}$

$$
\begin{aligned}
& \text { Length } 640 \mathrm{~km} \\
& \text { Width } 210 \mathrm{~km}
\end{aligned}
$$

Lifetimes
90 s
(Drews \& Rouppe van der Voort, 2017)

PMJs leave an imprint in H -alpha wings (Bühler et al., 2019)

Length 2000 km Lifetimes 160 s

PMJs evolution at high temporal cadence

- Coherent, rapid and uniform increase in intensity over the length of a pre-existing fibril.
- Not clear whether brightening grows from bottom to top.
- After brightening, different scenarios are observed at the top of the PMJ, it may: rise, retract, or not move. Visually, the whole PMJs seems:
- To have a proper motion (if the bottom also rises)
- To shrink (if the bottom does not move)
- Some PMJs undergo splitting
(Rouppe van der Voort \& Drews, 2019)

The importance of high temporal resolution when studying the dynamic solar atmosphere

Rising top + rising bottom \longrightarrow Shrinking

Rouppe van der Voort \& Drews (2019)
Splitting

35 snapshots, cadence~32 s FOV= 55"x55", 0".057/pixel CRISPRED (de la Cruz Rodríguez et al. 2015)

81 snapshots, cadence~14 s FOV=56"x43", 0".0375/pixel CHROMISRED
(Löfdahl et al., 2019)

Both datasets are aligned

Detection of PMJs using CRISPeX
(Vissers et al. 2012)
Shape of Ca II 854.2 nm intensity profile Morphology
Brightness
Lifetimes

37 PMJs with a regular behavior over time

Length	1450 km	Lifetimes	$1-6 \mathrm{~min}$
Width	430 km	Intensity	$10-60 \% \mathrm{l} / \mathrm{l}_{\mathrm{QS}}$

Adapted from Esteban Pozuelo et al. (2019)

Ca II K line: powerful tool to vLos diagnostics
(Björgen et al. 2018)

Adapted from Esteban Pozuelo et al. (2019)

Ca II K line: powerful tool to v Los diagnostics
(Björgen et al. 2018)

PMJs:

Brighter in the K_{2} and K_{3} peaks Stand out in the K_{2} peak separations

Scenario on the photosphere
Milne-Eddington inversions of the Fe I 630 nm pair Stokes profiles

Adapted from Esteban Pozuelo et al. (2019)

Strong horizontal gradients in the magnetic field inclination.

Susceptible of harboring field lines that sink to deeper layers.
Magnetic reconnections could occur between these field lines and the spines, as Tiwari et al. (2016) proposed.

Magnetic reconnections could occur very deep or at smaller spatial scales

Rise speeds of order $100 \mathrm{~km} \mathrm{~s}^{-1}$

$$
\theta=7.5^{\circ} \begin{aligned}
& \text { Vertical gas motions: vLos } \sim \text { Apparent rise speeds } \\
& \text { Horizontal gas motions: vLos } \sim 15 \mathrm{~km} \mathrm{~s}^{-1}
\end{aligned}
$$

$\log (\tau)$
Esteban Pozuelo et al. (2019)

PMJs may not be entirely related to gas motions induced by magnetic reconnection...

Alternative? Perturbation front caused by magnetic reconnections in the deep photosphere that propagates to upper layers, such as currents

Current heating: $\uparrow \mathrm{T}$ at temperature minimum region
\uparrow collisions with electrons in the PMJ location might also enhance the coupling to the local conditions at higher layers comparatively to its surroundings

Summary

PMJs are bright jet-like transients popping up at the chromosphere of sunspot penumbrae. The brightening is uniform along the length of a preexisting fibril. High temporal cadence observations are crucial to understand their evolution.

PMJs appear on both penumbral sides above locations with strong horizontal gradient of the magnetic field inclination $->$ magnetic reconnection as in Tiwari et al. (2016) in deeper layers or at smaller spatial scales? chromosphere and harbor conspicuous polarization signals in Ca II $\mathbf{8 5 4 . 2} \mathbf{n m}$. The multi-lobed Stokes V signals are caused by the characteristic shape of Stokes I.
PMJs are hot features visible from the low chromosphere, that expand and are hotter at larger heights. PMJs show a progressive heating to TR temperatures. They are related to low LOS velocities.

5 Discrepancies between their LOS velocities and apparent speeds could suggest that PMJs are not purely related to mass motions. Instead, we speculate that they might be produced due to currents induced by magnetic reconnections that propagate to upper layers.

